You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
5.6 KiB
185 lines
5.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestDropoutOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
|
|
self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'],
|
|
'Mask': np.ones((32, 64)).astype('float32')
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X'], 'Out', max_relative_error=0.05)
|
|
|
|
|
|
class TestDropoutOp2(TestDropoutOp):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
|
|
self.attrs = {'dropout_prob': 1.0, 'fix_seed': True, 'is_test': False}
|
|
self.outputs = {
|
|
'Out': np.zeros((32, 64)).astype('float32'),
|
|
'Mask': np.zeros((32, 64)).astype('float32')
|
|
}
|
|
|
|
|
|
class TestDropoutOp3(TestDropoutOp):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
|
|
self.attrs = {'dropout_prob': 0.0, 'fix_seed': True, 'is_test': False}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'],
|
|
'Mask': np.ones((32, 64, 2)).astype('float32')
|
|
}
|
|
|
|
|
|
class TestDropoutOp4(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
|
|
self.attrs = {'dropout_prob': 0.35, 'fix_seed': True, 'is_test': True}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestDropoutOp5(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
|
|
self.attrs = {'dropout_prob': 0.75, 'is_test': True}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob'])
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestDropoutOp6(TestDropoutOp):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
|
|
self.attrs = {
|
|
'dropout_prob': 1.0,
|
|
'fix_seed': True,
|
|
'is_test': False,
|
|
'dropout_implementation': 'upscale_in_train'
|
|
}
|
|
self.outputs = {
|
|
'Out': np.zeros((32, 64)).astype('float32'),
|
|
'Mask': np.zeros((32, 64)).astype('float32')
|
|
}
|
|
|
|
|
|
class TestDropoutOp7(TestDropoutOp):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64, 2)).astype("float32")}
|
|
self.attrs = {
|
|
'dropout_prob': 0.0,
|
|
'fix_seed': True,
|
|
'is_test': False,
|
|
'dropout_implementation': 'upscale_in_train'
|
|
}
|
|
self.outputs = {
|
|
'Out': self.inputs['X'],
|
|
'Mask': np.ones((32, 64, 2)).astype('float32')
|
|
}
|
|
|
|
|
|
class TestDropoutOp8(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64)).astype("float32")}
|
|
self.attrs = {
|
|
'dropout_prob': 0.35,
|
|
'fix_seed': True,
|
|
'is_test': True,
|
|
'dropout_implementation': 'upscale_in_train'
|
|
}
|
|
self.outputs = {'Out': self.inputs['X']}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestDropoutOp9(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")}
|
|
self.attrs = {
|
|
'dropout_prob': 0.75,
|
|
'is_test': True,
|
|
'dropout_implementation': 'upscale_in_train'
|
|
}
|
|
self.outputs = {'Out': self.inputs['X']}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestFP16DropoutOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "dropout"
|
|
self.init_test_case()
|
|
|
|
x = np.random.random(self.input_size).astype("float16")
|
|
out = x * (1.0 - self.prob)
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.attrs = {
|
|
'dropout_prob': self.prob,
|
|
'fix_seed': self.fix_seed,
|
|
'is_test': True
|
|
}
|
|
self.outputs = {'Out': out}
|
|
|
|
def init_test_case(self):
|
|
self.input_size = [32, 64]
|
|
self.prob = 0.35
|
|
self.fix_seed = True
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda() and core.op_support_gpu("dropout"):
|
|
self.check_output_with_place(core.CUDAPlace(0), atol=1e-3)
|
|
|
|
|
|
class TestFP16DropoutOp2(TestFP16DropoutOp):
|
|
def init_test_case(self):
|
|
self.input_size = [32, 64, 3]
|
|
self.prob = 0.75
|
|
self.fix_seed = False
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|