You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
8.3 KiB
212 lines
8.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import paddle
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid.backward import append_backward
|
|
import paddle.fluid.framework as framework
|
|
from paddle.fluid.framework import Program, switch_main_program
|
|
import bisect
|
|
import numpy as np
|
|
|
|
fluid.default_startup_program().random_seed = 1
|
|
|
|
|
|
class TestDyRnnStaticInput(unittest.TestCase):
|
|
def setUp(self):
|
|
self._delta = 0.005
|
|
self._max_sequence_len = 3
|
|
self._program = Program()
|
|
switch_main_program(self._program)
|
|
self.output_dim = 10
|
|
self.place = core.CPUPlace()
|
|
self.prepare_x_tensor()
|
|
self.prepare_static_input_tensor()
|
|
self.exe = fluid.Executor(self.place)
|
|
|
|
def prepare_x_tensor(self):
|
|
self.x_tensor_dim = 10
|
|
lod = [[2, 1, 3]]
|
|
shape = [sum(lod[0]), self.x_tensor_dim]
|
|
self.x_tensor_data = np.random.random(shape).astype('float32')
|
|
self.x_tensor = core.LoDTensor()
|
|
self.x_tensor.set_recursive_sequence_lengths(lod)
|
|
self.x_tensor.set(self.x_tensor_data, self.place)
|
|
|
|
def prepare_static_input_tensor(self):
|
|
self.static_input_tensor_dim = 4
|
|
lod = [[1, 2, 3]]
|
|
shape = [sum(lod[0]), self.static_input_tensor_dim]
|
|
self.static_input_data = np.random.random(shape).astype('float32')
|
|
self.static_input_tensor = core.LoDTensor()
|
|
self.static_input_tensor.set_recursive_sequence_lengths(lod)
|
|
self.static_input_tensor.set(self.static_input_data, self.place)
|
|
|
|
def fetch_value(self, var):
|
|
fetch_outs = self.exe.run(feed={
|
|
'x_tensor': self.x_tensor,
|
|
'static_input_tensor': self.static_input_tensor
|
|
},
|
|
fetch_list=[var],
|
|
return_numpy=False)
|
|
return self._lodtensor_to_ndarray(fetch_outs[0])
|
|
|
|
def _lodtensor_to_ndarray(self, lod_tensor):
|
|
dims = lod_tensor.shape()
|
|
ndarray = np.zeros(shape=dims).astype('float32')
|
|
for i in range(np.product(dims)):
|
|
ndarray.ravel()[i] = lod_tensor._get_float_element(i)
|
|
return ndarray, lod_tensor.recursive_sequence_lengths()
|
|
|
|
def build_graph(self, only_forward=False):
|
|
x_tensor = fluid.layers.data(
|
|
name='x_tensor',
|
|
shape=[self.x_tensor_dim],
|
|
dtype='float32',
|
|
lod_level=1)
|
|
x_tensor.stop_gradient = False
|
|
|
|
static_input_tensor = fluid.layers.data(
|
|
name='static_input_tensor',
|
|
shape=[self.static_input_tensor_dim],
|
|
dtype='float32',
|
|
lod_level=1)
|
|
static_input_tensor.stop_gradient = False
|
|
|
|
if only_forward:
|
|
static_input_out_array = self._program.global_block().create_var(
|
|
name='static_input_out_array',
|
|
type=core.VarDesc.VarType.LOD_TENSOR_ARRAY,
|
|
dtype='float32')
|
|
static_input_out_array.stop_gradient = True
|
|
|
|
rnn = fluid.layers.DynamicRNN()
|
|
with rnn.block():
|
|
step_x = rnn.step_input(x_tensor)
|
|
step_static_input = rnn.static_input(static_input_tensor)
|
|
if only_forward:
|
|
fluid.layers.array_write(
|
|
x=step_static_input,
|
|
i=rnn.step_idx,
|
|
array=static_input_out_array)
|
|
last = fluid.layers.sequence_pool(
|
|
input=step_static_input, pool_type='last')
|
|
projected = fluid.layers.fc(input=[step_x, last],
|
|
size=self.output_dim)
|
|
rnn.output(projected)
|
|
|
|
if only_forward:
|
|
static_input_step_outs = []
|
|
step_idx = fluid.layers.fill_constant(
|
|
shape=[1], dtype='int64', value=0)
|
|
step_idx.stop_gradient = True
|
|
|
|
for i in range(self._max_sequence_len):
|
|
step_out = fluid.layers.array_read(static_input_out_array,
|
|
step_idx)
|
|
step_out.stop_gradient = True
|
|
static_input_step_outs.append(step_out)
|
|
fluid.layers.increment(x=step_idx, value=1.0, in_place=True)
|
|
|
|
if only_forward:
|
|
return static_input_step_outs
|
|
|
|
last = fluid.layers.sequence_pool(input=rnn(), pool_type='last')
|
|
loss = fluid.layers.mean(last)
|
|
append_backward(loss)
|
|
static_input_grad = self._program.global_block().var(
|
|
framework.grad_var_name('static_input_tensor'))
|
|
return static_input_grad, loss
|
|
|
|
def get_expected_static_step_outs(self):
|
|
x_lod = self.x_tensor.recursive_sequence_lengths()
|
|
x_seq_len = x_lod[0]
|
|
x_seq_len_sorted = sorted(x_seq_len)
|
|
x_sorted_indices = np.argsort(x_seq_len)[::-1]
|
|
|
|
static_lod = self.static_input_tensor.recursive_sequence_lengths()
|
|
static_sliced = []
|
|
cur_offset = 0
|
|
for i in range(len(static_lod[0])):
|
|
static_sliced.append(self.static_input_data[cur_offset:(
|
|
cur_offset + static_lod[0][i])])
|
|
cur_offset += static_lod[0][i]
|
|
static_seq_len = static_lod[0]
|
|
static_reordered = []
|
|
for i in range(len(x_sorted_indices)):
|
|
static_reordered.extend(static_sliced[x_sorted_indices[i]].tolist())
|
|
static_seq_len_reordered = [
|
|
static_seq_len[x_sorted_indices[i]]
|
|
for i in range(len(x_sorted_indices))
|
|
]
|
|
|
|
static_step_outs = []
|
|
static_step_lods = []
|
|
|
|
for i in range(self._max_sequence_len):
|
|
end = len(x_seq_len) - bisect.bisect_left(x_seq_len_sorted, i + 1)
|
|
lod = []
|
|
total_len = 0
|
|
for i in range(end):
|
|
lod.append(static_seq_len_reordered[i])
|
|
total_len += lod[-1]
|
|
static_step_lods.append([lod])
|
|
end = total_len
|
|
static_step_outs.append(
|
|
np.array(static_reordered[:end]).astype('float32'))
|
|
|
|
return static_step_outs, static_step_lods
|
|
|
|
def test_step_out(self):
|
|
static_step_outs = self.build_graph(only_forward=True)
|
|
self.exe.run(framework.default_startup_program())
|
|
expected_outs, expected_lods = self.get_expected_static_step_outs()
|
|
for i in range(self._max_sequence_len):
|
|
step_out, lod = self.fetch_value(static_step_outs[i])
|
|
self.assertTrue(np.allclose(step_out, expected_outs[i]))
|
|
self.assertTrue(np.allclose(lod, expected_lods[i]))
|
|
|
|
def test_network_gradient(self):
|
|
static_input_grad, loss = self.build_graph()
|
|
self.exe.run(framework.default_startup_program())
|
|
|
|
actual_gradients, actual_lod = self.fetch_value(static_input_grad)
|
|
|
|
static_input_shape = self.static_input_tensor.shape()
|
|
numeric_gradients = np.zeros(shape=static_input_shape).astype('float32')
|
|
# calculate numeric gradients
|
|
tensor_size = np.product(static_input_shape)
|
|
for i in range(tensor_size):
|
|
origin = self.static_input_tensor._get_float_element(i)
|
|
x_pos = origin + self._delta
|
|
self.static_input_tensor._set_float_element(i, x_pos)
|
|
y_pos = self.fetch_value(loss)[0][0]
|
|
x_neg = origin - self._delta
|
|
self.static_input_tensor._set_float_element(i, x_neg)
|
|
y_neg = self.fetch_value(loss)[0][0]
|
|
self.static_input_tensor._set_float_element(i, origin)
|
|
numeric_gradients.ravel()[i] = (y_pos - y_neg) / self._delta / 2
|
|
self.assertTrue(np.allclose(actual_gradients, numeric_gradients, 0.001))
|
|
self.assertTrue(
|
|
np.allclose(actual_lod,
|
|
self.static_input_tensor.recursive_sequence_lengths()))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|