You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
6.4 KiB
189 lines
6.4 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import paddle.fluid.core as core
|
|
import unittest
|
|
import numpy
|
|
|
|
|
|
class TestTensor(unittest.TestCase):
|
|
def test_int_tensor(self):
|
|
scope = core.Scope()
|
|
var = scope.var("test_tensor")
|
|
place = core.CPUPlace()
|
|
|
|
tensor = var.get_tensor()
|
|
|
|
tensor._set_dims([1000, 784])
|
|
tensor._alloc_int(place)
|
|
tensor_array = numpy.array(tensor)
|
|
self.assertEqual((1000, 784), tensor_array.shape)
|
|
tensor_array[3, 9] = 1
|
|
tensor_array[19, 11] = 2
|
|
tensor.set(tensor_array, place)
|
|
|
|
tensor_array_2 = numpy.array(tensor)
|
|
self.assertEqual(1, tensor_array_2[3, 9])
|
|
self.assertEqual(2, tensor_array_2[19, 11])
|
|
|
|
def test_float_tensor(self):
|
|
scope = core.Scope()
|
|
var = scope.var("test_tensor")
|
|
place = core.CPUPlace()
|
|
|
|
tensor = var.get_tensor()
|
|
|
|
tensor._set_dims([1000, 784])
|
|
tensor._alloc_float(place)
|
|
|
|
tensor_array = numpy.array(tensor)
|
|
self.assertEqual((1000, 784), tensor_array.shape)
|
|
tensor_array[3, 9] = 1.0
|
|
tensor_array[19, 11] = 2.0
|
|
tensor.set(tensor_array, place)
|
|
|
|
tensor_array_2 = numpy.array(tensor)
|
|
self.assertAlmostEqual(1.0, tensor_array_2[3, 9])
|
|
self.assertAlmostEqual(2.0, tensor_array_2[19, 11])
|
|
|
|
def test_int8_tensor(self):
|
|
scope = core.Scope()
|
|
var = scope.var("int8_tensor")
|
|
cpu_tensor = var.get_tensor()
|
|
tensor_array = numpy.random.randint(
|
|
-127, high=128, size=[100, 200], dtype=numpy.int8)
|
|
place = core.CPUPlace()
|
|
cpu_tensor.set(tensor_array, place)
|
|
cpu_tensor_array_2 = numpy.array(cpu_tensor)
|
|
self.assertAlmostEqual(cpu_tensor_array_2.all(), tensor_array.all())
|
|
|
|
if core.is_compiled_with_cuda():
|
|
cuda_tensor = var.get_tensor()
|
|
tensor_array = numpy.random.randint(
|
|
-127, high=128, size=[100, 200], dtype=numpy.int8)
|
|
place = core.CUDAPlace(0)
|
|
cuda_tensor.set(tensor_array, place)
|
|
cuda_tensor_array_2 = numpy.array(cuda_tensor)
|
|
self.assertAlmostEqual(cuda_tensor_array_2.all(),
|
|
tensor_array.all())
|
|
|
|
def test_int_lod_tensor(self):
|
|
place = core.CPUPlace()
|
|
scope = core.Scope()
|
|
var_lod = scope.var("test_lod_tensor")
|
|
lod_tensor = var_lod.get_tensor()
|
|
|
|
lod_tensor._set_dims([4, 4, 6])
|
|
lod_tensor._alloc_int(place)
|
|
array = numpy.array(lod_tensor)
|
|
array[0, 0, 0] = 3
|
|
array[3, 3, 5] = 10
|
|
lod_tensor.set(array, place)
|
|
lod_tensor.set_recursive_sequence_lengths([[2, 2]])
|
|
|
|
lod_v = numpy.array(lod_tensor)
|
|
self.assertTrue(numpy.alltrue(array == lod_v))
|
|
|
|
lod = lod_tensor.recursive_sequence_lengths()
|
|
self.assertEqual(2, lod[0][0])
|
|
self.assertEqual(2, lod[0][1])
|
|
|
|
def test_float_lod_tensor(self):
|
|
place = core.CPUPlace()
|
|
scope = core.Scope()
|
|
var_lod = scope.var("test_lod_tensor")
|
|
|
|
lod_tensor = var_lod.get_tensor()
|
|
lod_tensor._set_dims([5, 2, 3, 4])
|
|
lod_tensor._alloc_float(place)
|
|
|
|
tensor_array = numpy.array(lod_tensor)
|
|
self.assertEqual((5, 2, 3, 4), tensor_array.shape)
|
|
tensor_array[0, 0, 0, 0] = 1.0
|
|
tensor_array[0, 0, 0, 1] = 2.0
|
|
lod_tensor.set(tensor_array, place)
|
|
|
|
lod_v = numpy.array(lod_tensor)
|
|
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
|
|
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
|
|
self.assertEqual(len(lod_tensor.recursive_sequence_lengths()), 0)
|
|
|
|
lod_py = [[2, 1], [1, 2, 2]]
|
|
lod_tensor.set_recursive_sequence_lengths(lod_py)
|
|
lod = lod_tensor.recursive_sequence_lengths()
|
|
self.assertListEqual(lod_py, lod)
|
|
|
|
def test_lod_tensor_init(self):
|
|
place = core.CPUPlace()
|
|
lod_py = [[2, 1], [1, 2, 2]]
|
|
lod_tensor = core.LoDTensor()
|
|
|
|
lod_tensor._set_dims([5, 2, 3, 4])
|
|
lod_tensor.set_recursive_sequence_lengths(lod_py)
|
|
lod_tensor._alloc_float(place)
|
|
tensor_array = numpy.array(lod_tensor)
|
|
tensor_array[0, 0, 0, 0] = 1.0
|
|
tensor_array[0, 0, 0, 1] = 2.0
|
|
lod_tensor.set(tensor_array, place)
|
|
|
|
lod_v = numpy.array(lod_tensor)
|
|
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
|
|
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
|
|
self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths())
|
|
|
|
def test_lod_tensor_gpu_init(self):
|
|
if not core.is_compiled_with_cuda():
|
|
return
|
|
place = core.CUDAPlace(0)
|
|
lod_py = [[2, 1], [1, 2, 2]]
|
|
lod_tensor = core.LoDTensor()
|
|
|
|
lod_tensor._set_dims([5, 2, 3, 4])
|
|
lod_tensor.set_recursive_sequence_lengths(lod_py)
|
|
lod_tensor._alloc_float(place)
|
|
tensor_array = numpy.array(lod_tensor)
|
|
tensor_array[0, 0, 0, 0] = 1.0
|
|
tensor_array[0, 0, 0, 1] = 2.0
|
|
lod_tensor.set(tensor_array, place)
|
|
|
|
lod_v = numpy.array(lod_tensor)
|
|
self.assertAlmostEqual(1.0, lod_v[0, 0, 0, 0])
|
|
self.assertAlmostEqual(2.0, lod_v[0, 0, 0, 1])
|
|
self.assertListEqual(lod_py, lod_tensor.recursive_sequence_lengths())
|
|
|
|
def test_empty_tensor(self):
|
|
place = core.CPUPlace()
|
|
scope = core.Scope()
|
|
var = scope.var("test_tensor")
|
|
|
|
tensor = var.get_tensor()
|
|
|
|
tensor._set_dims([0, 1])
|
|
tensor._alloc_float(place)
|
|
|
|
tensor_array = numpy.array(tensor)
|
|
self.assertEqual((0, 1), tensor_array.shape)
|
|
|
|
if core.is_compiled_with_cuda():
|
|
gpu_place = core.CUDAPlace(0)
|
|
tensor._alloc_float(gpu_place)
|
|
tensor_array = numpy.array(tensor)
|
|
self.assertEqual((0, 1), tensor_array.shape)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|