You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
6.1 KiB
182 lines
6.1 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
__all__ = ['DeviceWorker', 'Hogwild', 'DownpourSGD']
|
|
|
|
|
|
class DeviceWorker(object):
|
|
"""
|
|
DeviceWorker is an abstract class, which generates worker desc.
|
|
This class is an inner class that we do computation logics within
|
|
the implementation. For example, execution of a program or a graph.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init.
|
|
"""
|
|
self.program_ = None
|
|
self.infer_ = None
|
|
|
|
def _set_infer(self, infer=False):
|
|
"""
|
|
set inference flag for current device worker
|
|
|
|
Args:
|
|
infer(bool): whether to do inference
|
|
"""
|
|
self.infer_ = infer
|
|
|
|
def _set_fleet_desc(self, fleet_desc):
|
|
"""
|
|
Set fleet desc.
|
|
|
|
Args:
|
|
fleet_desc(PSParameter): pslib.PSParameter object
|
|
"""
|
|
self.fleet_desc_ = fleet_desc
|
|
|
|
def _set_program(self, program):
|
|
"""
|
|
Set program.
|
|
|
|
Args:
|
|
program(Program): a Program object
|
|
"""
|
|
self.program_ = program
|
|
|
|
def _gen_worker_desc(self, trainer_desc):
|
|
"""
|
|
Generator worker desc.
|
|
|
|
Args:
|
|
trainer_desc(TrainerDesc): a TrainerDesc object
|
|
"""
|
|
raise NotImplementedError(
|
|
"DeviceWorker does not implement gen_worker_desc, "
|
|
"please use Hogwild or DownpourSGD, etc.")
|
|
|
|
|
|
class Hogwild(DeviceWorker):
|
|
"""
|
|
Hogwild is a kind of SGD algorithm.
|
|
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init.
|
|
"""
|
|
super(Hogwild, self).__init__()
|
|
|
|
def _gen_worker_desc(self, trainer_desc):
|
|
"""
|
|
Generator worker desc, which device worker is HogwildWorker.
|
|
|
|
Args:
|
|
trainer_desc(TrainerDesc): a TrainerDesc object
|
|
"""
|
|
trainer_desc.device_worker_name = "HogwildWorker"
|
|
if self.infer_:
|
|
# just ignore feed op for inference model
|
|
trainer_desc.hogwild_param.skip_ops.extend(["feed"])
|
|
|
|
|
|
class DownpourSGD(DeviceWorker):
|
|
"""
|
|
DownpourSGD is a kind of distributed SGD algorithm.
|
|
"""
|
|
|
|
def __init__(self):
|
|
"""
|
|
Init.
|
|
initialize downpourSGD device worker
|
|
"""
|
|
super(DownpourSGD, self).__init__()
|
|
|
|
def _gen_worker_desc(self, trainer_desc):
|
|
"""
|
|
Generator worker desc, which device worker is DownpourWorker.
|
|
|
|
Args:
|
|
trainer_desc(TrainerDesc): a TrainerDesc object
|
|
"""
|
|
dense_table_set = set()
|
|
program_id = str(id(self.program_))
|
|
if self.program_ == None:
|
|
print("program of current device worker is not configured")
|
|
exit(-1)
|
|
opt_info = self.program_._fleet_opt
|
|
program_configs = opt_info["program_configs"]
|
|
downpour = trainer_desc.downpour_param
|
|
|
|
for pid in program_configs:
|
|
if pid == program_id:
|
|
pc = downpour.program_config.add()
|
|
pc.program_id = program_id
|
|
for i in program_configs[program_id]["push_sparse"]:
|
|
pc.push_sparse_table_id.extend([i])
|
|
for i in program_configs[program_id]["push_dense"]:
|
|
pc.push_dense_table_id.extend([i])
|
|
dense_table_set.add(i)
|
|
for i in program_configs[program_id]["pull_sparse"]:
|
|
pc.pull_sparse_table_id.extend([i])
|
|
for i in program_configs[program_id]["pull_dense"]:
|
|
pc.pull_dense_table_id.extend([i])
|
|
dense_table_set.add(i)
|
|
break
|
|
|
|
trainer_desc.device_worker_name = "DownpourWorker"
|
|
pull_thread = trainer_desc.pull_dense_param
|
|
pull_thread.device_num = trainer_desc.thread_num
|
|
for i in self.fleet_desc_.trainer_param.dense_table:
|
|
if i.table_id in dense_table_set:
|
|
dense_table = pull_thread.dense_table.add()
|
|
dense_table.dense_value_name.extend(i.dense_variable_name)
|
|
dense_table.table_id = \
|
|
i.table_id
|
|
sparse_table = downpour.sparse_table.add()
|
|
sparse_table.table_id = \
|
|
self.fleet_desc_.trainer_param.sparse_table[0].table_id
|
|
sparse_table.sparse_key_name.extend(
|
|
self.fleet_desc_.trainer_param.sparse_table[0].slot_key)
|
|
sparse_table.sparse_value_name.extend(
|
|
self.fleet_desc_.trainer_param.sparse_table[0].slot_value)
|
|
sparse_table.sparse_grad_name.extend(
|
|
self.fleet_desc_.trainer_param.sparse_table[0].slot_gradient)
|
|
sparse_table.emb_dim = \
|
|
self.fleet_desc_.server_param.downpour_server_param.downpour_table_param[
|
|
0].accessor.fea_dim - 2
|
|
sparse_table.fea_dim = sparse_table.emb_dim + 2
|
|
# TODO(guru4elephant): hard code here, need to improve
|
|
sparse_table.label_var_name = "click"
|
|
|
|
for i in self.fleet_desc_.trainer_param.dense_table:
|
|
if i.table_id in dense_table_set:
|
|
dense_table = downpour.dense_table.add()
|
|
dense_table.table_id = i.table_id
|
|
dense_table.dense_value_name.extend(i.dense_variable_name)
|
|
dense_table.dense_grad_name.extend(
|
|
i.dense_gradient_variable_name)
|
|
downpour.skip_ops.extend(self.fleet_desc_.trainer_param.skip_op)
|
|
if self.infer_:
|
|
downpour.push_dense = False
|
|
downpour.push_sparse = False
|
|
|
|
|
|
class DeviceWorkerFactory(object):
|
|
def _create_device_worker(self, worker_type):
|
|
classname = worker_type.capitalize()
|
|
return globals()[classname]()
|