You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
190 lines
6.6 KiB
190 lines
6.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
from ..framework import Variable, unique_name
|
|
from .layer_function_generator import OpProtoHolder
|
|
from ..initializer import force_init_on_cpu
|
|
|
|
|
|
def monkey_patch_variable():
|
|
def unique_tmp_name():
|
|
return unique_name.generate("tmp")
|
|
|
|
def safe_get_dtype(var):
|
|
try:
|
|
dtype = var.dtype
|
|
except:
|
|
raise ValueError("Cannot get data type from %s", var.name)
|
|
return dtype
|
|
|
|
def create_tensor(block, value, dtype, shape):
|
|
value = float(value)
|
|
tmp_name = unique_tmp_name()
|
|
var = block.create_var(name=tmp_name, shape=shape, dtype=dtype)
|
|
block.append_op(
|
|
type="fill_constant",
|
|
outputs={'Out': [var]},
|
|
attrs={
|
|
'dtype': var.dtype,
|
|
'shape': shape,
|
|
'value': value,
|
|
'force_cpu': force_init_on_cpu()
|
|
})
|
|
return var
|
|
|
|
def create_scalar(block, value, dtype):
|
|
return create_tensor(block, value, dtype, shape=[1])
|
|
|
|
def create_tensor_with_batchsize(ref_var, value, dtype):
|
|
assert isinstance(ref_var, Variable)
|
|
value = float(value)
|
|
tmp_name = unique_tmp_name()
|
|
var = ref_var.block.create_var(name=tmp_name, dtype=dtype)
|
|
batch_dim = -1
|
|
for i, d in enumerate(ref_var.shape):
|
|
if d < 0:
|
|
batch_dim = i
|
|
break
|
|
assert batch_dim != -1
|
|
ref_var.block.append_op(
|
|
type='fill_constant_batch_size_like',
|
|
outputs={'Out': [var]},
|
|
inputs={'Input': [ref_var]},
|
|
attrs={
|
|
'shape': ref_var.shape,
|
|
'value': value,
|
|
'input_dim_idx': batch_dim,
|
|
'output_dim_idx': batch_dim
|
|
})
|
|
return var
|
|
|
|
def astype(self, dtype):
|
|
"""
|
|
Cast a variable to a specified data type.
|
|
NOTE: The variable must be a Tensor
|
|
Args:
|
|
self(Variable): The source variable
|
|
dtype: The target dtype
|
|
|
|
Returns:
|
|
Variable with new dtype
|
|
"""
|
|
tmp_name = unique_tmp_name()
|
|
out = self.block.create_var(name=tmp_name, dtype=dtype)
|
|
self.block.append_op(
|
|
type="cast",
|
|
inputs={"X": [self]},
|
|
outputs={"Out": [out]},
|
|
attrs={"in_dtype": self.dtype,
|
|
"out_dtype": out.dtype})
|
|
return out
|
|
|
|
def _elemwise_method_creator_(method_name, op_type, reverse=False):
|
|
def __impl__(self, other_var):
|
|
lhs_dtype = safe_get_dtype(self)
|
|
|
|
if not isinstance(other_var, Variable):
|
|
if reverse:
|
|
has_batch_size = False
|
|
for elem in self.shape:
|
|
if elem < 0:
|
|
has_batch_size = True
|
|
break
|
|
if not has_batch_size:
|
|
other_var = create_tensor(
|
|
self.block,
|
|
other_var,
|
|
dtype=lhs_dtype,
|
|
shape=self.shape)
|
|
else:
|
|
other_var = create_tensor_with_batchsize(
|
|
self, other_var, lhs_dtype)
|
|
else:
|
|
# add fill_op to self.block
|
|
other_var = create_scalar(
|
|
self.block, value=other_var, dtype=lhs_dtype)
|
|
|
|
rhs_dtype = safe_get_dtype(other_var)
|
|
if lhs_dtype != rhs_dtype:
|
|
other_var = astype(other_var, lhs_dtype)
|
|
if reverse:
|
|
tmp = self
|
|
self = other_var
|
|
other_var = tmp
|
|
|
|
tmp_name = unique_tmp_name()
|
|
out = self.block.create_var(name=tmp_name, dtype=lhs_dtype)
|
|
|
|
axis = -1
|
|
if other_var.shape[0] == -1:
|
|
axis = 0
|
|
assert len(self.shape) >= len(other_var.shape), (
|
|
"The rank of the first argument of an binary operator cannot "
|
|
"be smaller than the rank of its second argument: %s vs %s" %
|
|
(len(self.shape), len(other_var.shape)))
|
|
|
|
self.block.append_op(
|
|
type=op_type,
|
|
inputs={'X': [self],
|
|
'Y': [other_var]},
|
|
outputs={'Out': out},
|
|
attrs={'axis': axis})
|
|
return out
|
|
|
|
comment = OpProtoHolder.instance().get_op_proto(op_type).comment
|
|
|
|
__impl__.__doc__ = """
|
|
{0}
|
|
Args:
|
|
self(Variable): left hand variable
|
|
other_var(Variable|float|int): right hand variable
|
|
|
|
Returns:
|
|
Variable
|
|
""".format(comment)
|
|
__impl__.__name__ = method_name
|
|
return __impl__
|
|
|
|
# inject methods
|
|
for method_name, op_type, reverse in (
|
|
("__add__", "elementwise_add", False),
|
|
# a+b == b+a. Do not need to reverse explicitly
|
|
("__radd__", "elementwise_add", False),
|
|
("__sub__", "elementwise_sub", False),
|
|
("__rsub__", "elementwise_sub", True),
|
|
("__mul__", "elementwise_mul", False),
|
|
# a*b == b*a. Do not need to reverse explicitly
|
|
("__rmul__", "elementwise_mul", False),
|
|
("__div__", "elementwise_div", False),
|
|
("__truediv__", "elementwise_div", False),
|
|
("__rdiv__", "elementwise_div", True),
|
|
("__rtruediv__", "elementwise_div", True),
|
|
("__pow__", "elementwise_pow", False),
|
|
("__rpow__", "elementwise_pow", True),
|
|
("__floordiv__", "elementwise_floordiv", False),
|
|
("__mod__", "elementwise_mod", False),
|
|
# for logical compare
|
|
("__eq__", "equal", False),
|
|
("__ne__", "not_equal", False),
|
|
("__lt__", "less_than", False),
|
|
("__le__", "less_equal", False),
|
|
("__gt__", "greater_than", False),
|
|
("__ge__", "greater_equal", False)):
|
|
setattr(Variable, method_name,
|
|
_elemwise_method_creator_(method_name, op_type, reverse))
|
|
|
|
Variable.astype = astype
|