You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							194 lines
						
					
					
						
							7.4 KiB
						
					
					
				
			
		
		
	
	
							194 lines
						
					
					
						
							7.4 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include <string>
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/operators/batch_fc_op.h"
 | |
| #include "paddle/fluid/operators/math/blas.h"
 | |
| #include "paddle/fluid/platform/cuda_primitives.h"
 | |
| #include "paddle/fluid/platform/gpu_info.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| using framework::Tensor;
 | |
| 
 | |
| const int CUDA_NUM_THREADS = 1024;
 | |
| static inline int GET_BLOCKS(const int N) {
 | |
|   return (N + CUDA_NUM_THREADS - 1) / CUDA_NUM_THREADS;
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void add_bias_kernel(T* data, int slot_pairs_num, int ins_num,
 | |
|                                 int out_dim, const T* bias) {
 | |
|   CUDA_KERNEL_LOOP(idx, slot_pairs_num * ins_num * out_dim) {
 | |
|     int block_len = ins_num * out_dim;
 | |
|     int slot_index = idx / block_len;
 | |
|     int out_dim_index = (idx % block_len) % out_dim;
 | |
|     T temp = data[idx] + bias[slot_index * out_dim + out_dim_index];
 | |
|     data[idx] = temp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void add_bias(gpuStream_t stream, T* data, int slot_pairs_num, int ins_num,
 | |
|               int out_dim, const T* bias) {
 | |
|   add_bias_kernel<<<GET_BLOCKS(slot_pairs_num * ins_num * out_dim),
 | |
|                     CUDA_NUM_THREADS, 0, stream>>>(data, slot_pairs_num,
 | |
|                                                    ins_num, out_dim, bias);
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| __global__ void add_bias_grad_kernel(const T* dout_data, int slot_pairs_num,
 | |
|                                      int ins_num, int out_dim, T* db_data) {
 | |
|   CUDA_KERNEL_LOOP(idx, slot_pairs_num * out_dim) {
 | |
|     int row = idx / out_dim;
 | |
|     int col = idx % out_dim;
 | |
|     T temp = static_cast<T>(0);
 | |
|     for (int i = 0; i < ins_num; ++i) {
 | |
|       int select_indx = ((row + 1) * i + 1) * col;
 | |
|       temp += dout_data[select_indx];
 | |
|     }
 | |
|     db_data[idx] += temp;
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T>
 | |
| void add_bias_grad(gpuStream_t stream, const T* dout_data, int slot_pairs_num,
 | |
|                    int ins_num, int out_dim, T* db_data) {
 | |
|   add_bias_grad_kernel<<<GET_BLOCKS(slot_pairs_num * out_dim), CUDA_NUM_THREADS,
 | |
|                          0, stream>>>(dout_data, slot_pairs_num, ins_num,
 | |
|                                       out_dim, db_data);
 | |
| }
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class BatchFCCUDAKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     // X.dim = slot_pairs_num * ins_num * in_dim
 | |
|     // W.dim = slot_pairs_num * in_dim * out_dim
 | |
|     // b.dim = slot_pairs_num * out_dim
 | |
|     // output.dim = slot_pairs_num * ins_num * out_dim
 | |
|     auto* input = ctx.Input<framework::LoDTensor>("Input");
 | |
|     auto* w = ctx.Input<Tensor>("W");
 | |
|     auto* bias = ctx.Input<Tensor>("Bias");
 | |
|     auto* output = ctx.Output<framework::LoDTensor>("Out");
 | |
|     auto input_dims = input->dims();
 | |
|     auto w_dims = w->dims();
 | |
|     auto slot_pairs_num = input_dims[0];
 | |
|     auto ins_num = input_dims[1];
 | |
|     auto in_dim = input_dims[2];
 | |
|     auto out_dim = w_dims[2];
 | |
| 
 | |
|     // get data ptr
 | |
|     const T* in_data = input->data<T>();
 | |
|     const T* w_data = w->data<T>();
 | |
|     const T* bias_data = bias->data<T>();
 | |
| 
 | |
|     output->Resize({slot_pairs_num, ins_num, out_dim});
 | |
|     T* out_data = output->mutable_data<T>(ctx.GetPlace());
 | |
|     // initialize
 | |
|     auto out_eigen = framework::EigenVector<T>::Flatten(*output);
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
 | |
|                        .eigen_device();
 | |
|     out_eigen.device(place) = out_eigen.constant(static_cast<T>(0));
 | |
| 
 | |
|     CBLAS_TRANSPOSE transA = CblasNoTrans;
 | |
|     CBLAS_TRANSPOSE transB = CblasNoTrans;
 | |
| 
 | |
|     T alpha = 1;
 | |
|     T beta = 0;
 | |
|     int64_t strideA = ins_num * in_dim;
 | |
|     int64_t strideB = in_dim * out_dim;
 | |
| 
 | |
|     auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
 | |
|     blas.BatchedGEMM(transA, transB, ins_num, out_dim, in_dim, alpha, in_data,
 | |
|                      w_data, beta, out_data, slot_pairs_num, strideA, strideB);
 | |
|     add_bias<T>(ctx.cuda_device_context().stream(), out_data, slot_pairs_num,
 | |
|                 ins_num, out_dim, bias_data);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class BatchFCGradOpCUDAKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto* input = ctx.Input<Tensor>("Input");
 | |
|     auto* w = ctx.Input<Tensor>("W");
 | |
|     auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
 | |
| 
 | |
|     auto* dx = ctx.Output<Tensor>(framework::GradVarName("Input"));
 | |
|     auto* dw = ctx.Output<Tensor>(framework::GradVarName("W"));
 | |
|     auto* db = ctx.Output<Tensor>(framework::GradVarName("Bias"));
 | |
| 
 | |
|     auto input_dims = input->dims();
 | |
|     auto w_dims = w->dims();
 | |
|     auto slot_pairs_num = input_dims[0];
 | |
|     auto ins_num = input_dims[1];
 | |
|     auto in_dim = input_dims[2];
 | |
|     auto out_dim = w_dims[2];
 | |
| 
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto& place = *ctx.template device_context<platform::CUDADeviceContext>()
 | |
|                        .eigen_device();
 | |
|     // initialize
 | |
|     dx->mutable_data<T>(ctx.GetPlace());
 | |
|     auto dx_eigen = framework::EigenVector<T>::Flatten(*dx);
 | |
|     dx_eigen.device(place) = dx_eigen.constant(static_cast<T>(0));
 | |
| 
 | |
|     dw->mutable_data<T>(ctx.GetPlace());
 | |
|     auto dw_eigen = framework::EigenVector<T>::Flatten(*dw);
 | |
|     dw_eigen.device(place) = dw_eigen.constant(static_cast<T>(0));
 | |
| 
 | |
|     // get data ptr
 | |
|     const T* x_data = input->data<T>();
 | |
|     const T* w_data = w->data<T>();
 | |
|     const T* dout_data = dout->data<T>();
 | |
|     T* dx_data = dx->data<T>();
 | |
|     T* dw_data = dw->data<T>();
 | |
| 
 | |
|     db->mutable_data<T>(ctx.GetPlace());
 | |
|     auto db_eigen = framework::EigenVector<T>::Flatten(*db);
 | |
|     db_eigen.device(place) = db_eigen.constant(static_cast<T>(0));
 | |
|     T* db_data = db->data<T>();
 | |
|     add_bias_grad<T>(ctx.cuda_device_context().stream(), dout_data,
 | |
|                      slot_pairs_num, ins_num, out_dim, db_data);
 | |
| 
 | |
|     auto blas = math::GetBlas<platform::CUDADeviceContext, T>(dev_ctx);
 | |
|     T alpha = 1;
 | |
|     T beta = 0;
 | |
| 
 | |
|     // dx = dout_data * y^T
 | |
|     blas.BatchedGEMM(CblasNoTrans, CblasTrans, ins_num, in_dim, out_dim, alpha,
 | |
|                      dout_data, w_data, beta, dx_data, slot_pairs_num,
 | |
|                      ins_num * out_dim, out_dim * in_dim);
 | |
|     // dy = x^T * dout_data
 | |
|     blas.BatchedGEMM(CblasTrans, CblasNoTrans, in_dim, out_dim, ins_num, alpha,
 | |
|                      x_data, dout_data, beta, dw_data, slot_pairs_num,
 | |
|                      in_dim * ins_num, ins_num * out_dim);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| using GPUCtx = paddle::platform::CUDADeviceContext;
 | |
| REGISTER_OP_CUDA_KERNEL(batch_fc, ops::BatchFCCUDAKernel<GPUCtx, float>,
 | |
|                         ops::BatchFCCUDAKernel<GPUCtx, double>);
 | |
| 
 | |
| REGISTER_OP_CUDA_KERNEL(batch_fc_grad,
 | |
|                         ops::BatchFCGradOpCUDAKernel<GPUCtx, float>,
 | |
|                         ops::BatchFCGradOpCUDAKernel<GPUCtx, double>);
 |