You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							177 lines
						
					
					
						
							7.3 KiB
						
					
					
				
			
		
		
	
	
							177 lines
						
					
					
						
							7.3 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/tensor.h"
 | |
| #include "paddle/fluid/platform/cudnn_helper.h"
 | |
| #include "paddle/fluid/platform/dynload/cudnn.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class ScopedRNNBase {
 | |
|  public:
 | |
|   ScopedRNNBase(int seq_length, int batch_size, int input_size, int hidden_size,
 | |
|                 int num_layers, float dropout_prob, int seed, int weight_numel,
 | |
|                 bool initialized, bool is_bidirec)
 | |
|       : seq_length_(seq_length),
 | |
|         batch_size_(batch_size),
 | |
|         input_size_(input_size),
 | |
|         hidden_size_(hidden_size),
 | |
|         num_layers_(num_layers),
 | |
|         dropout_prob_(dropout_prob),
 | |
|         seed_(seed),
 | |
|         weight_numel_(weight_numel),
 | |
|         initialized_(initialized),
 | |
|         is_bidirec_(is_bidirec) {}
 | |
| 
 | |
|   template <typename T>
 | |
|   void Create(const cudnnHandle_t& handle, const platform::Place& place,
 | |
|               const std::vector<int>& sequence_length, size_t* workspace_size,
 | |
|               size_t* reserve_size, framework::Tensor* dropout_state) {
 | |
|     int numDirections = is_bidirec_ ? 2 : 1;
 | |
|     cudnnDataType_t cudnn_type = platform::CudnnDataType<T>::type;
 | |
| 
 | |
|     // ------------------- cudnn x, y descriptors ---------------------
 | |
|     std::vector<int> dims_x = {batch_size_, input_size_, 1};
 | |
|     std::vector<int> strides_x = {input_size_, 1, 1};
 | |
|     std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
 | |
|     std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};
 | |
|     for (int i = 0; i < seq_length_; ++i) {
 | |
|       x_descs_.emplace_back(x_desc_.descriptor<T>(dims_x, strides_x));
 | |
|       y_descs_.emplace_back(y_desc_.descriptor<T>(dims_y, strides_y));
 | |
|     }
 | |
| 
 | |
| #if CUDNN_VERSION >= 7201
 | |
|     if (!sequence_length.empty()) {
 | |
|       x_seq_desc_.descriptor<T>(seq_length_, batch_size_, input_size_, true,
 | |
|                                 sequence_length);
 | |
|       y_seq_desc_.descriptor<T>(seq_length_, batch_size_,
 | |
|                                 hidden_size_ * numDirections, true,
 | |
|                                 sequence_length);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // ------------------- cudnn hx, hy, cx, cy descriptors----------
 | |
|     std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
 | |
|                                 hidden_size_};
 | |
|     std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};
 | |
|     init_h_desc_.descriptor<T>(dims_hx, strides_hx);
 | |
|     init_c_desc_.descriptor<T>(dims_hx, strides_hx);
 | |
|     last_h_desc_.descriptor<T>(dims_hx, strides_hx);
 | |
|     last_c_desc_.descriptor<T>(dims_hx, strides_hx);
 | |
| 
 | |
|     // ------------------- cudnn dropout descriptors ---------------------
 | |
|     size_t state_size;
 | |
|     if (!initialized_) {
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnDropoutGetStatesSize(handle, &state_size));
 | |
|       dropout_state->mutable_data<uint8_t>({static_cast<int64_t>(state_size)},
 | |
|                                            place);
 | |
|     }
 | |
|     dropout_desc_.descriptor(handle, place, initialized_, dropout_prob_,
 | |
|                              dropout_state, seed_, state_size);
 | |
| 
 | |
| // ------------------- cudnn rnn descriptors ---------------------
 | |
| #if CUDNN_VERSION >= 6000
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor_v6(
 | |
|         handle, rnn_desc_.desc(), hidden_size_, num_layers_,
 | |
|         dropout_desc_.desc(), CUDNN_LINEAR_INPUT,
 | |
|         is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
 | |
|         CUDNN_RNN_ALGO_STANDARD, cudnn_type));
 | |
| #else
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor(
 | |
|         rnn_desc_.desc(), hidden_size_, num_layers_, dropout_desc_.desc(),
 | |
|         CUDNN_LINEAR_INPUT,
 | |
|         is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
 | |
|         cudnn_type));
 | |
| #endif
 | |
| 
 | |
| #if CUDNN_VERSION >= 7201
 | |
|     if (!sequence_length.empty()) {
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNPaddingMode(
 | |
|           rnn_desc_.desc(), CUDNN_RNN_PADDED_IO_ENABLED));
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     // ------------------- cudnn weights_size ---------------------
 | |
|     size_t weights_size_;
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNParamsSize(
 | |
|         handle, rnn_desc_.desc(), x_descs_[0], &weights_size_, cudnn_type));
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         weights_size_, sizeof(T) * weight_numel_,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The cudnn lstm and setting weight size should be same."));
 | |
|     // ------------------- cudnn weight descriptors ---------------------
 | |
|     platform::DataLayout layout = platform::DataLayout::kNCHW;
 | |
|     int dim_tmp = weights_size_ / sizeof(T);
 | |
|     std::vector<int> dim_w = {dim_tmp, 1, 1};
 | |
|     weight_desc_.descriptor<T>(layout, dim_w);
 | |
|     // ------------------- cudnn workspace, reserve size ---------------------
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNWorkspaceSize(
 | |
|         handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
 | |
|         workspace_size));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnGetRNNTrainingReserveSize(
 | |
|             handle, rnn_desc_.desc(), seq_length_, x_descs_.data(),
 | |
|             reserve_size));
 | |
|   }
 | |
|   cudnnTensorDescriptor_t* x_descs() { return x_descs_.data(); }
 | |
|   cudnnTensorDescriptor_t* y_descs() { return y_descs_.data(); }
 | |
| #if CUDNN_VERSION >= 7201
 | |
|   cudnnRNNDataDescriptor_t x_seq_desc() { return x_seq_desc_.desc(); }
 | |
|   cudnnRNNDataDescriptor_t y_seq_desc() { return y_seq_desc_.desc(); }
 | |
| #endif
 | |
|   cudnnTensorDescriptor_t init_h_desc() { return init_h_desc_.desc(); }
 | |
|   cudnnTensorDescriptor_t init_c_desc() { return init_c_desc_.desc(); }
 | |
|   cudnnTensorDescriptor_t last_h_desc() { return last_h_desc_.desc(); }
 | |
|   cudnnTensorDescriptor_t last_c_desc() { return last_c_desc_.desc(); }
 | |
|   cudnnRNNDescriptor_t rnn_desc() { return rnn_desc_.desc(); }
 | |
|   cudnnDropoutDescriptor_t dropout_desc() { return dropout_desc_.desc(); }
 | |
|   cudnnFilterDescriptor_t weight_desc() { return weight_desc_.desc(); }
 | |
| 
 | |
|  private:
 | |
|   int seq_length_;
 | |
|   int batch_size_;
 | |
|   int input_size_;
 | |
|   int hidden_size_;
 | |
|   int num_layers_;
 | |
|   float dropout_prob_;
 | |
|   int seed_;
 | |
|   int weight_numel_;
 | |
|   bool initialized_;
 | |
|   bool is_bidirec_;
 | |
|   std::vector<cudnnTensorDescriptor_t> x_descs_;
 | |
|   std::vector<cudnnTensorDescriptor_t> y_descs_;
 | |
| 
 | |
|   platform::ScopedTensorDescriptor x_desc_;
 | |
|   platform::ScopedTensorDescriptor y_desc_;
 | |
| #if CUDNN_VERSION >= 7201
 | |
|   platform::ScopedRNNTensorDescriptor x_seq_desc_;
 | |
|   platform::ScopedRNNTensorDescriptor y_seq_desc_;
 | |
| #endif
 | |
|   platform::ScopedTensorDescriptor init_h_desc_;
 | |
|   platform::ScopedTensorDescriptor init_c_desc_;
 | |
|   platform::ScopedTensorDescriptor last_h_desc_;
 | |
|   platform::ScopedTensorDescriptor last_c_desc_;
 | |
|   platform::ScopedDropoutDescriptor dropout_desc_;
 | |
|   platform::ScopedFilterDescriptor weight_desc_;
 | |
|   platform::ScopedRNNDescriptor rnn_desc_;
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |