You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							258 lines
						
					
					
						
							10 KiB
						
					
					
				
			
		
		
	
	
							258 lines
						
					
					
						
							10 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/tensor.h"
 | |
| #include "paddle/fluid/platform/cudnn_helper.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| struct CudnnRNNCache {
 | |
|   CudnnRNNCache() {
 | |
|     x_desc_ = NULL;
 | |
|     y_desc_ = NULL;
 | |
|   }
 | |
|   ~CudnnRNNCache() { release(); }
 | |
| 
 | |
|   cudnnRNNDescriptor_t rnn_desc_;
 | |
|   cudnnTensorDescriptor_t *x_desc_;
 | |
|   cudnnTensorDescriptor_t *y_desc_;
 | |
| 
 | |
|   cudnnTensorDescriptor_t hx_desc_;
 | |
|   cudnnTensorDescriptor_t cx_desc_;
 | |
|   cudnnTensorDescriptor_t hy_desc_;
 | |
|   cudnnTensorDescriptor_t cy_desc_;
 | |
| 
 | |
|   cudnnTensorDescriptor_t dhx_desc_;
 | |
|   cudnnTensorDescriptor_t dcx_desc_;
 | |
|   cudnnTensorDescriptor_t dhy_desc_;
 | |
|   cudnnTensorDescriptor_t dcy_desc_;
 | |
| 
 | |
|   cudnnTensorDescriptor_t output_x_desc_;
 | |
|   cudnnTensorDescriptor_t output_y_desc_;
 | |
| 
 | |
|   cudnnDropoutDescriptor_t dropout_desc_;
 | |
| 
 | |
|   size_t weights_size_;
 | |
|   cudnnFilterDescriptor_t w_desc_;
 | |
|   cudnnFilterDescriptor_t dw_desc_;
 | |
| 
 | |
|   size_t workspace_size_;
 | |
|   framework::Tensor workspace_data_;
 | |
| 
 | |
|   size_t seq_length_;
 | |
| 
 | |
|   float dropout_prob_;
 | |
|   bool is_bidirec_;
 | |
| 
 | |
|   int batch_size_;
 | |
|   int input_size_;
 | |
|   int hidden_size_;
 | |
|   int num_layers_;
 | |
|   int seed_;
 | |
| 
 | |
|   void init(cudnnHandle_t handle, const platform::Place &place, size_t seq_len,
 | |
|             int batch_size, int input_size, int hidden_size, int num_layers,
 | |
|             float dropout_prob, bool is_bidirec, int seed, int weight_numel,
 | |
|             size_t *reserve_size_, framework::Tensor *dropout_state_,
 | |
|             bool initialized, cudnnDataType_t cudnn_type) {
 | |
|     seq_length_ = seq_len;
 | |
|     batch_size_ = batch_size;
 | |
|     input_size_ = input_size;
 | |
|     hidden_size_ = hidden_size;
 | |
|     num_layers_ = num_layers;
 | |
|     dropout_prob_ = dropout_prob;
 | |
|     is_bidirec_ = is_bidirec;
 | |
|     seed_ = seed;
 | |
| 
 | |
|     const auto numDirections = is_bidirec_ ? 2 : 1;
 | |
|     auto cudnn_size =
 | |
|         cudnn_type == CUDNN_DATA_FLOAT ? sizeof(float) : sizeof(double);
 | |
| 
 | |
|     x_desc_ = new cudnnTensorDescriptor_t[seq_length_];
 | |
|     y_desc_ = new cudnnTensorDescriptor_t[seq_length_];
 | |
|     std::vector<int> dims = {batch_size_, input_size_, 1};
 | |
|     std::vector<int> strides = {input_size_, 1, 1};
 | |
| 
 | |
|     std::vector<int> dims_y = {batch_size_, hidden_size_ * numDirections, 1};
 | |
|     std::vector<int> strides_y = {hidden_size_ * numDirections, 1, 1};
 | |
| 
 | |
|     for (size_t i = 0; i < seq_length_; ++i) {
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnCreateTensorDescriptor(&x_desc_[i]));
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnCreateTensorDescriptor(&y_desc_[i]));
 | |
| 
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|           x_desc_[i], cudnn_type, 3, dims.data(), strides.data()));
 | |
| 
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|           y_desc_[i], cudnn_type, 3, dims_y.data(), strides_y.data()));
 | |
|     }
 | |
| 
 | |
|     std::vector<int> dims_hx = {num_layers_ * numDirections, batch_size_,
 | |
|                                 hidden_size_};
 | |
|     std::vector<int> strides_hx = {hidden_size_ * batch_size_, hidden_size_, 1};
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&hx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&cx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&hy_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&cy_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&dhx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&dcx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&dhy_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateTensorDescriptor(&dcy_desc_));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         hx_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         cx_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         hy_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         cy_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         dhx_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         dcx_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         dhy_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetTensorNdDescriptor(
 | |
|         dcy_desc_, cudnn_type, 3, dims_hx.data(), strides_hx.data()));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateDropoutDescriptor(&dropout_desc_));
 | |
| 
 | |
|     size_t state_size;
 | |
|     if (!initialized) {
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnDropoutGetStatesSize(handle, &state_size));
 | |
|       dropout_state_->Resize({static_cast<int64_t>(state_size)});
 | |
|       uint8_t *dropout_state_data =
 | |
|           dropout_state_->mutable_data<uint8_t>(place);
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetDropoutDescriptor(
 | |
|           dropout_desc_, handle, dropout_prob_, dropout_state_data, state_size,
 | |
|           seed_));
 | |
|     } else {
 | |
|       uint8_t *dropout_state_data = dropout_state_->data<uint8_t>();
 | |
|       auto dropout_state_dims = dropout_state_->dims();
 | |
|       state_size = dropout_state_dims[0];
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnRestoreDropoutDescriptor(
 | |
|               dropout_desc_, handle, dropout_prob_, dropout_state_data,
 | |
|               state_size, 0));
 | |
|     }
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateRNNDescriptor(&rnn_desc_));
 | |
| 
 | |
| #if CUDNN_VERSION >= 6000
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor_v6(
 | |
|         handle, rnn_desc_, hidden_size_, num_layers_, dropout_desc_,
 | |
|         CUDNN_LINEAR_INPUT,
 | |
|         is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
 | |
|         CUDNN_RNN_ALGO_STANDARD, cudnn_type));
 | |
| #else
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetRNNDescriptor(
 | |
|         rnn_desc_, hidden_size_, num_layers_, dropout_desc_, CUDNN_LINEAR_INPUT,
 | |
|         is_bidirec_ ? CUDNN_BIDIRECTIONAL : CUDNN_UNIDIRECTIONAL, CUDNN_LSTM,
 | |
|         cudnn_type));
 | |
| #endif
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateFilterDescriptor(&w_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnCreateFilterDescriptor(&dw_desc_));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNParamsSize(
 | |
|         handle, rnn_desc_, x_desc_[0], &weights_size_, cudnn_type));
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         weights_size_, cudnn_size * weight_numel,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "The cudnn lstm and setting weight size should be same."));
 | |
| 
 | |
|     int dim_w[3];
 | |
|     dim_w[0] = weights_size_ / cudnn_size;
 | |
|     dim_w[1] = 1;
 | |
|     dim_w[2] = 1;
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
 | |
|         w_desc_, cudnn_type, CUDNN_TENSOR_NCHW, 3, dim_w));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSetFilterNdDescriptor(
 | |
|         dw_desc_, cudnn_type, CUDNN_TENSOR_NCHW, 3, dim_w));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnGetRNNWorkspaceSize(
 | |
|         handle, rnn_desc_, seq_length_, x_desc_, &workspace_size_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnGetRNNTrainingReserveSize(
 | |
|             handle, rnn_desc_, seq_length_, x_desc_, reserve_size_));
 | |
| 
 | |
|     workspace_data_.Resize({static_cast<int64_t>(workspace_size_)});
 | |
|     workspace_data_.mutable_data<uint8_t>(place);
 | |
|   }
 | |
| 
 | |
|   void release() {
 | |
|     for (size_t i = 0; i < seq_length_; ++i) {
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnDestroyTensorDescriptor(x_desc_[i]));
 | |
|       PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|           platform::dynload::cudnnDestroyTensorDescriptor(y_desc_[i]));
 | |
|     }
 | |
| 
 | |
|     delete[] x_desc_;
 | |
|     delete[] y_desc_;
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(hx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(cx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(hy_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(cy_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(dhx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(dcx_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(dhy_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyTensorDescriptor(dcy_desc_));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyDropoutDescriptor(dropout_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyRNNDescriptor(rnn_desc_));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyFilterDescriptor(w_desc_));
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnDestroyFilterDescriptor(dw_desc_));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |