You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							236 lines
						
					
					
						
							7.9 KiB
						
					
					
				
			
		
		
	
	
							236 lines
						
					
					
						
							7.9 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|    http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <memory.h>
 | |
| #include <cstring>
 | |
| #include <vector>
 | |
| 
 | |
| #include "paddle/fluid/framework/ddim.h"
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/tensor.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| #include "paddle/fluid/platform/place.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| 
 | |
| /**
 | |
|  * A thin wrapper for gathering on cpu tensor
 | |
|  * Return a new tensor from source tensor, gathered according to index
 | |
|  * input[src]: type-T source Tensor
 | |
|  * input[index]: type-IndexT index Tensor (1-D)
 | |
|  * return: output tensor
 | |
|  */
 | |
| template <typename T, typename IndexT = int>
 | |
| void CPUGather(const platform::DeviceContext& ctx, const Tensor& src,
 | |
|                const Tensor& index, Tensor* output) {
 | |
|   PADDLE_ENFORCE_EQ(
 | |
|       platform::is_cpu_place(ctx.GetPlace()), true,
 | |
|       platform::errors::PreconditionNotMet("It should be running on the CPU."));
 | |
|   // check index of shape 1-D
 | |
|   if (index.dims().size() == 2) {
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         index.dims()[1], 1,
 | |
|         platform::errors::InvalidArgument(
 | |
|             "index.dims()[1] should be 1 when index.dims().size() = 2"
 | |
|             "in gather_op, but received value is [%d].",
 | |
|             index.dims()[1]));
 | |
|   } else {
 | |
|     PADDLE_ENFORCE_EQ(index.dims().size(), 1,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "index.dims().size() should be 1 or 2 in gather_op,"
 | |
|                           "but received shape's size is [%d].",
 | |
|                           index.dims().size()));
 | |
|   }
 | |
|   int64_t index_size = index.dims()[0];
 | |
| 
 | |
|   auto src_dims = src.dims();
 | |
| 
 | |
|   const T* p_src = src.data<T>();
 | |
|   const IndexT* p_index = index.data<IndexT>();
 | |
|   T* p_output = output->data<T>();
 | |
| 
 | |
|   // slice size
 | |
|   int slice_size = 1;
 | |
|   for (int i = 1; i < src_dims.size(); ++i) slice_size *= src_dims[i];
 | |
| 
 | |
|   const size_t slice_bytes = slice_size * sizeof(T);
 | |
| 
 | |
|   for (int64_t i = 0; i < index_size; ++i) {
 | |
|     IndexT index_ = p_index[i];
 | |
|     memcpy(p_output + i * slice_size, p_src + index_ * slice_size, slice_bytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T, typename IndexT = int>
 | |
| void CPUGatherNd(const platform::DeviceContext& ctx, const Tensor& input,
 | |
|                  const Tensor& index, Tensor* output) {
 | |
|   PADDLE_ENFORCE_EQ(
 | |
|       platform::is_cpu_place(ctx.GetPlace()), true,
 | |
|       platform::errors::PreconditionNotMet("It should be running on the CPU."));
 | |
| 
 | |
|   auto index_dims = index.dims();
 | |
|   auto index_dims_size = index_dims.size();
 | |
|   auto input_dims = input.dims();
 | |
|   auto input_dims_size = input_dims.size();
 | |
| 
 | |
|   const T* p_input = input.data<T>();
 | |
|   const IndexT* p_index = index.data<IndexT>();
 | |
|   T* p_output = output->data<T>();
 | |
| 
 | |
|   // final dim
 | |
|   int64_t end_size = index_dims[index_dims_size - 1];
 | |
|   // remain dim
 | |
|   auto remain_ddim = framework::slice_ddim(index_dims, 0, index_dims_size - 1);
 | |
|   int64_t remain_numel = framework::product(remain_ddim);
 | |
|   // slice size
 | |
|   int64_t slice_size = 1;
 | |
|   for (int64_t i = end_size; i < input_dims_size; ++i) {
 | |
|     slice_size *= input_dims[i];
 | |
|   }
 | |
|   const size_t slice_bytes = slice_size * sizeof(T);
 | |
| 
 | |
|   for (int64_t i = 0; i < remain_numel; ++i) {
 | |
|     int64_t index_ = 0;
 | |
|     int64_t temp = 1;
 | |
|     for (int64_t j = end_size - 1; j >= 0; --j) {
 | |
|       IndexT index_value = p_index[i * end_size + j];
 | |
|       PADDLE_ENFORCE_LT(
 | |
|           index_value, input_dims[j],
 | |
|           platform::errors::InvalidArgument(
 | |
|               "Input(index[-1)] has wrong value, it is [%d]", index_value));
 | |
|       PADDLE_ENFORCE_GE(
 | |
|           index_value, 0UL,
 | |
|           platform::errors::InvalidArgument(
 | |
|               "The value of Input(index) must be no less than 0"));
 | |
| 
 | |
|       index_ += (index_value * temp);
 | |
|       temp *= input_dims[j];
 | |
|     }
 | |
|     memcpy(p_output + i * slice_size, p_input + index_ * slice_size,
 | |
|            slice_bytes);
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T, typename U, typename V>
 | |
| void GatherV2Function(const Tensor* input, const Tensor* index,
 | |
|                       const Tensor* axis, Tensor* out,
 | |
|                       const paddle::platform::Place& place) {
 | |
|   auto* axis_data = axis->data<V>();
 | |
|   auto* index_data = index->data<U>();
 | |
| 
 | |
|   int axis_size = axis->numel();
 | |
|   int index_size = index->numel();
 | |
|   int input_size = input->numel();
 | |
|   auto input_dim = input->dims();
 | |
|   auto* input_data = input->data<T>();
 | |
| 
 | |
|   if (input->numel() == 0) return;
 | |
|   PADDLE_ENFORCE_EQ(axis_size, 1,
 | |
|                     platform::errors::InvalidArgument(
 | |
|                         "Axis size should be 1, but received %d", axis_size));
 | |
|   int axis_index = axis_data[0];
 | |
| 
 | |
|   int input_index_dim_size = input_dim[axis_index];
 | |
|   for (int i = 0; i < index_size; i++) {
 | |
|     PADDLE_ENFORCE_LT(index_data[i], input_index_dim_size,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "The element of Index must be less than the size of "
 | |
|                           "input dim size of axis which is %d, but received "
 | |
|                           "index element which is %d in the %d index.",
 | |
|                           input_index_dim_size, index_data[i], i));
 | |
|   }
 | |
| 
 | |
|   int inner_dim_size = 1;
 | |
|   int outer_dim_size = 1;
 | |
|   std::vector<int> out_dim_vec;
 | |
| 
 | |
|   for (int i = 0; i < axis_index; i++) {
 | |
|     inner_dim_size *= input_dim[i];
 | |
|     out_dim_vec.push_back(input_dim[i]);
 | |
|   }
 | |
|   out_dim_vec.push_back(index_size);
 | |
|   for (int i = axis_index + 1; i < input_dim.size(); i++) {
 | |
|     outer_dim_size *= input_dim[i];
 | |
|     out_dim_vec.push_back(input_dim[i]);
 | |
|   }
 | |
|   auto out_dim = framework::make_ddim(out_dim_vec);
 | |
| 
 | |
|   out->Resize(out_dim);
 | |
|   auto* out_data = out->mutable_data<T>(place);
 | |
| 
 | |
|   int out_index = 0;
 | |
|   for (int i = 0; i < inner_dim_size; i++) {
 | |
|     for (int j = 0; j < index_size; j++) {
 | |
|       for (int k = 0; k < outer_dim_size; k++) {
 | |
|         int index = k + index_data[j] * outer_dim_size +
 | |
|                     (i * input_size / inner_dim_size);
 | |
|         out_data[out_index] = input_data[index];
 | |
|         out_index++;
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| template <typename T, typename U, typename V>
 | |
| void GatherV2GradFunction(const Tensor* input, const Tensor* index,
 | |
|                           const Tensor* axis, Tensor* out,
 | |
|                           const paddle::platform::Place& place) {
 | |
|   auto* axis_data = axis->data<V>();
 | |
|   auto* index_data = index->data<U>();
 | |
| 
 | |
|   int axis_size = axis->numel();
 | |
|   auto input_dim = input->dims();
 | |
|   auto* input_data = input->data<T>();
 | |
| 
 | |
|   if (input->numel() == 0) return;
 | |
|   PADDLE_ENFORCE_EQ(axis_size, 1,
 | |
|                     platform::errors::InvalidArgument(
 | |
|                         "Axis size should be 1, but received %d", axis_size));
 | |
|   int axis_index = axis_data[0];
 | |
|   int input_index_dim_size = input_dim[axis_index];
 | |
| 
 | |
|   int inner_dim_size = 1;
 | |
|   int outer_dim_size = 1;
 | |
| 
 | |
|   for (int i = 0; i < axis_index; i++) {
 | |
|     inner_dim_size *= input_dim[i];
 | |
|   }
 | |
|   for (int i = axis_index + 1; i < input_dim.size(); i++) {
 | |
|     outer_dim_size *= input_dim[i];
 | |
|   }
 | |
| 
 | |
|   auto* out_data = out->mutable_data<T>(place);
 | |
|   auto* dev_ctx = platform::DeviceContextPool::Instance().Get(place);
 | |
|   auto out_dim = out->dims();
 | |
|   int out_index_dim_size = out_dim[axis_index];
 | |
|   operators::math::set_constant(*dev_ctx, out, 0.0);
 | |
| 
 | |
|   for (int i = 0; i < inner_dim_size; i++) {
 | |
|     for (int j = 0; j < input_index_dim_size; j++) {
 | |
|       for (int k = 0; k < outer_dim_size; k++) {
 | |
|         int index = k + index_data[j] * outer_dim_size +
 | |
|                     i * outer_dim_size * out_index_dim_size;
 | |
|         out_data[index] += input_data[j * outer_dim_size + k];
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| }
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |