You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							148 lines
						
					
					
						
							5.9 KiB
						
					
					
				
			
		
		
	
	
							148 lines
						
					
					
						
							5.9 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #ifndef PADDLE_WITH_HIP
 | |
| // HIP not support cudnnSpatialTfGridGeneratorForward
 | |
| 
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/platform/cudnn_helper.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace framework {
 | |
| class Tensor;
 | |
| }  // namespace framework
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
 | |
| using DataLayout = platform::DataLayout;
 | |
| using ScopedSpatialTransformerDescriptor =
 | |
|     platform::ScopedSpatialTransformerDescriptor;
 | |
| template <typename T>
 | |
| using CudnnDataType = platform::CudnnDataType<T>;
 | |
| 
 | |
| template <typename T>
 | |
| class CUDNNGridSampleOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "It must use CUDAPlace when using CUDA Kernel"));
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto handle = dev_ctx.cudnn_handle();
 | |
|     auto* input = ctx.Input<Tensor>("X");
 | |
|     auto* grid = ctx.Input<Tensor>("Grid");
 | |
|     auto* output = ctx.Output<Tensor>("Output");
 | |
| 
 | |
|     int n = input->dims()[0];
 | |
|     int c = input->dims()[1];
 | |
|     int out_h = grid->dims()[1];
 | |
|     int out_w = grid->dims()[2];
 | |
|     const int size[4] = {n, c, out_h, out_w};
 | |
| 
 | |
|     const T* input_data = input->data<T>();
 | |
|     const T* grid_data = grid->data<T>();
 | |
|     T* output_data =
 | |
|         output->mutable_data<T>({n, c, out_h, out_w}, ctx.GetPlace());
 | |
| 
 | |
|     ScopedSpatialTransformerDescriptor st_desc;
 | |
|     cudnnSpatialTransformerDescriptor_t cudnn_st_desc =
 | |
|         st_desc.descriptor<T>(4, size);
 | |
| 
 | |
|     ScopedTensorDescriptor input_desc;
 | |
|     ScopedTensorDescriptor output_desc;
 | |
|     cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | |
|         DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
 | |
|     cudnnTensorDescriptor_t cudnn_output_desc = output_desc.descriptor<T>(
 | |
|         DataLayout::kNCHW, framework::vectorize<int>(output->dims()));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSpatialTfSamplerForward(
 | |
|         handle, cudnn_st_desc, CudnnDataType<T>::kOne(), cudnn_input_desc,
 | |
|         input_data, grid_data, CudnnDataType<T>::kZero(), cudnn_output_desc,
 | |
|         output_data));
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class CUDNNGridSampleGradOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(platform::is_gpu_place(ctx.GetPlace()), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "It must use CUDAPlace when using CUDA Kernel"));
 | |
|     auto& dev_ctx = ctx.template device_context<platform::CUDADeviceContext>();
 | |
|     auto handle = dev_ctx.cudnn_handle();
 | |
|     auto* input = ctx.Input<Tensor>("X");
 | |
|     auto* grid = ctx.Input<Tensor>("Grid");
 | |
|     auto* output_grad = ctx.Input<Tensor>(framework::GradVarName("Output"));
 | |
|     auto* input_grad = ctx.Output<Tensor>(framework::GradVarName("X"));
 | |
|     auto* grid_grad = ctx.Output<Tensor>(framework::GradVarName("Grid"));
 | |
| 
 | |
|     auto output_grad_dims = output_grad->dims();
 | |
|     const int n = output_grad_dims[0];
 | |
|     const int c = output_grad_dims[1];
 | |
|     const int h = output_grad_dims[2];
 | |
|     const int w = output_grad_dims[3];
 | |
|     const int size[4] = {n, c, h, w};
 | |
| 
 | |
|     ScopedSpatialTransformerDescriptor st_dest;
 | |
|     cudnnSpatialTransformerDescriptor_t cudnn_st_dest =
 | |
|         st_dest.descriptor<T>(4, size);
 | |
| 
 | |
|     const T* input_data = input->data<T>();
 | |
|     const T* grid_data = grid->data<T>();
 | |
|     const T* output_grad_data = output_grad->data<T>();
 | |
|     T* input_grad_data =
 | |
|         input_grad->mutable_data<T>(input->dims(), ctx.GetPlace());
 | |
|     T* grid_grad_data =
 | |
|         grid_grad->mutable_data<T>({n, h, w, 2}, ctx.GetPlace());
 | |
| 
 | |
|     ScopedTensorDescriptor input_desc;
 | |
|     ScopedTensorDescriptor input_grad_desc;
 | |
|     ScopedTensorDescriptor output_grad_desc;
 | |
|     cudnnTensorDescriptor_t cudnn_input_desc = input_desc.descriptor<T>(
 | |
|         DataLayout::kNCHW, framework::vectorize<int>(input->dims()));
 | |
|     cudnnTensorDescriptor_t cudnn_input_grad_desc =
 | |
|         input_grad_desc.descriptor<T>(
 | |
|             DataLayout::kNCHW, framework::vectorize<int>(input_grad->dims()));
 | |
|     cudnnTensorDescriptor_t cudnn_output_grad_desc =
 | |
|         output_grad_desc.descriptor<T>(
 | |
|             DataLayout::kNCHW, framework::vectorize<int>(output_grad->dims()));
 | |
| 
 | |
|     PADDLE_ENFORCE_CUDA_SUCCESS(
 | |
|         platform::dynload::cudnnSpatialTfSamplerBackward(
 | |
|             handle, cudnn_st_dest, CudnnDataType<T>::kOne(), cudnn_input_desc,
 | |
|             input_data, CudnnDataType<T>::kZero(), cudnn_input_grad_desc,
 | |
|             input_grad_data, CudnnDataType<T>::kOne(), cudnn_output_grad_desc,
 | |
|             output_grad_data, grid_data, CudnnDataType<T>::kZero(),
 | |
|             grid_grad_data));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace plat = paddle::platform;
 | |
| REGISTER_OP_KERNEL(grid_sampler, CUDNN, plat::CUDAPlace,
 | |
|                    paddle::operators::CUDNNGridSampleOpKernel<float>,
 | |
|                    paddle::operators::CUDNNGridSampleOpKernel<double>);
 | |
| REGISTER_OP_KERNEL(grid_sampler_grad, CUDNN, plat::CUDAPlace,
 | |
|                    paddle::operators::CUDNNGridSampleGradOpKernel<float>,
 | |
|                    paddle::operators::CUDNNGridSampleGradOpKernel<double>);
 | |
| 
 | |
| #endif  // PADDLE_WITH_HIP
 |