You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							252 lines
						
					
					
						
							9.5 KiB
						
					
					
				
			
		
		
	
	
							252 lines
						
					
					
						
							9.5 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/grid_sampler_op.h"
 | |
| #include <memory>
 | |
| #include <string>
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/op_version_registry.h"
 | |
| #ifdef PADDLE_WITH_CUDA
 | |
| #include "paddle/fluid/platform/cudnn_helper.h"
 | |
| #endif
 | |
| #ifdef PADDLE_WITH_HIP
 | |
| #include "paddle/fluid/platform/miopen_helper.h"
 | |
| #endif
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| 
 | |
| class GridSampleOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "GridSampler");
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Grid"), "Input", "Grid", "GridSampler");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("Output"), "Output", "Output", "GridSampler");
 | |
| 
 | |
|     auto x_dims = ctx->GetInputDim("X");
 | |
|     auto grid_dims = ctx->GetInputDim("Grid");
 | |
|     PADDLE_ENFORCE_EQ(x_dims.size(), 4,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(X) of GridSampleOp should be 4-D Tensor, but "
 | |
|                           "received X dimension size(%d)",
 | |
|                           x_dims.size()));
 | |
|     PADDLE_ENFORCE_EQ(grid_dims.size(), 4,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(Grid) of GridSampleOp should be 4-D Tensor, "
 | |
|                           "but received X dimension size(%d)",
 | |
|                           grid_dims.size()));
 | |
|     if (ctx->IsRuntime() || grid_dims[3] > 0) {
 | |
|       PADDLE_ENFORCE_EQ(
 | |
|           grid_dims[3], 2,
 | |
|           platform::errors::InvalidArgument(
 | |
|               "Input(Grid) dimension[3] should be 2, but received %d",
 | |
|               grid_dims[3]));
 | |
|     }
 | |
|     if (ctx->IsRuntime()) {
 | |
|       PADDLE_ENFORCE_EQ(
 | |
|           grid_dims[0], x_dims[0],
 | |
|           platform::errors::InvalidArgument(
 | |
|               "Input(X) and Input(Grid) dimension[0] should be equal, but "
 | |
|               "received X dimension[0](%d) != Grid dimension[0](%d)",
 | |
|               x_dims[0], grid_dims[0]));
 | |
|     }
 | |
| 
 | |
|     ctx->SetOutputDim("Output",
 | |
|                       {x_dims[0], x_dims[1], grid_dims[1], grid_dims[2]});
 | |
|     ctx->ShareLoD("X", "Output");
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     framework::LibraryType library_{framework::LibraryType::kPlain};
 | |
| #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
 | |
|     if (platform::CanCUDNNBeUsed(ctx)) {
 | |
|       library_ = framework::LibraryType::kCUDNN;
 | |
|     }
 | |
| #endif
 | |
|     return framework::OpKernelType(
 | |
|         OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
 | |
|         framework::DataLayout::kAnyLayout, library_);
 | |
|   }
 | |
| };
 | |
| 
 | |
| class GridSampleOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X",
 | |
|              "(Tensor) The input data of GridSampleOp, "
 | |
|              "This is a 4-D tensor with shape of [N, C, H, W]");
 | |
|     AddInput(
 | |
|         "Grid",
 | |
|         "(Tensor) The input grid of GridSampleOp generated by AffineGridOp, "
 | |
|         "This is a 4-D tensor with shape of [N, H, W, 2] is the concatenation "
 | |
|         "of x and y coordinates with shape [N, H, W] in last dimension");
 | |
|     AddOutput("Output", "(Tensor) Output tensor with shape [N, C, H, W]");
 | |
|     AddAttr<bool>(
 | |
|         "use_cudnn",
 | |
|         "(bool, default true) Only used in cudnn kernel, need install cudnn")
 | |
|         .SetDefault(true);
 | |
| 
 | |
|     AddAttr<bool>(
 | |
|         "align_corners",
 | |
|         "(bool, default true) If align_corners is true, it will project"
 | |
|         "-1 and 1 to the centers of the corner pixels. Otherwise, it will "
 | |
|         "project"
 | |
|         "-1 and 1 to the image edges.")
 | |
|         .SetDefault(true);
 | |
| 
 | |
|     AddAttr<std::string>(
 | |
|         "mode",
 | |
|         "(bool, default true) The interpolation method which can be 'bilinear'"
 | |
|         " or 'nearest'.")
 | |
|         .SetDefault("bilinear");
 | |
| 
 | |
|     AddAttr<std::string>(
 | |
|         "padding_mode",
 | |
|         "(bool, default true) The padding method used when source"
 | |
|         "index is out of input images. It can be 'zeros', 'reflection' and "
 | |
|         "'border'.")
 | |
|         .SetDefault("zeros");
 | |
| 
 | |
|     AddComment(R"DOC(
 | |
|       This operation samples input X by using bilinear or nearest interpolation based on 
 | |
|       flow field grid, which is usually generated by affine_grid. The grid of
 | |
|       shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates 
 | |
|       with shape [N, H, W] each, where grid_x is indexing the 4th dimension 
 | |
|       (in width dimension) of input data x and grid_y is indexing the 3rd 
 | |
|       dimension (in height dimension), finally results is the bilinear 
 | |
|       interpolation value or nearest value of 4 nearest corner points.
 | |
| 
 | |
|       For bilinear interpolation mode:
 | |
|       Step 1:
 | |
|         Get (x, y) grid coordinates and scale to [0, H-1/W-1].
 | |
| 
 | |
|         grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
 | |
|         grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
 | |
| 
 | |
|       Step 2:
 | |
|         Indices input data X with grid (x, y) in each [H, W] area, and bilinear 
 | |
|         interpolate point value by 4 nearest points.
 | |
| 
 | |
|           wn ------- y_n ------- en
 | |
|           |           |           |
 | |
|           |          d_n          |
 | |
|           |           |           |
 | |
|          x_w --d_w-- grid--d_e-- x_e
 | |
|           |           |           |
 | |
|           |          d_s          |
 | |
|           |           |           |
 | |
|           ws ------- y_s ------- wn
 | |
| 
 | |
|         x_w = floor(x)              // west side x coord
 | |
|         x_e = x_w + 1               // east side x coord
 | |
|         y_n = floor(y)              // north side y coord
 | |
|         y_s = y_s + 1               // south side y coord
 | |
| 
 | |
|         d_w = grid_x - x_w          // distance to west side
 | |
|         d_e = x_e - grid_x          // distance to east side
 | |
|         d_n = grid_y - y_n          // distance to north side
 | |
|         d_s = y_s - grid_y          // distance to south side
 | |
| 
 | |
|         wn = X[:, :, y_n, x_w]      // north-west point value
 | |
|         en = X[:, :, y_n, x_e]      // north-east point value
 | |
|         ws = X[:, :, y_s, x_w]      // south-east point value
 | |
|         es = X[:, :, y_s, x_w]      // north-east point value
 | |
| 
 | |
|         output = wn * d_e * d_s + en * d_w * d_s
 | |
|                + ws * d_e * d_n + es * d_w * d_n
 | |
|         )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class GridSampleOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output",
 | |
|                    framework::GradVarName("X"), "grid_sampler");
 | |
|     auto input_dims = ctx->GetInputDim("X");
 | |
|     auto grid_dims = ctx->GetInputDim("Grid");
 | |
|     if (ctx->HasOutput(framework::GradVarName("X"))) {
 | |
|       ctx->SetOutputDim(framework::GradVarName("X"), input_dims);
 | |
|     }
 | |
|     if (ctx->HasOutput(framework::GradVarName("Grid"))) {
 | |
|       ctx->SetOutputDim(framework::GradVarName("Grid"), grid_dims);
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     framework::LibraryType library_{framework::LibraryType::kPlain};
 | |
| #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP)
 | |
|     if (platform::CanCUDNNBeUsed(ctx)) {
 | |
|       library_ = framework::LibraryType::kCUDNN;
 | |
|     }
 | |
| #endif
 | |
|     return framework::OpKernelType(
 | |
|         OperatorWithKernel::IndicateVarDataType(ctx, "X"), ctx.GetPlace(),
 | |
|         framework::DataLayout::kAnyLayout, library_);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class GridSampleGradMaker : public framework::SingleGradOpMaker<T> {
 | |
|  public:
 | |
|   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | |
| 
 | |
|  protected:
 | |
|   void Apply(GradOpPtr<T> op) const override {
 | |
|     op->SetType("grid_sampler_grad");
 | |
|     op->SetInput("X", this->Input("X"));
 | |
|     op->SetInput("Grid", this->Input("Grid"));
 | |
|     op->SetInput(framework::GradVarName("Output"), this->OutputGrad("Output"));
 | |
| 
 | |
|     op->SetAttrMap(this->Attrs());
 | |
| 
 | |
|     op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | |
|     op->SetOutput(framework::GradVarName("Grid"), this->InputGrad("Grid"));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(grid_sampler, ops::GridSampleOp, ops::GridSampleOpMaker,
 | |
|                   ops::GridSampleGradMaker<paddle::framework::OpDesc>,
 | |
|                   ops::GridSampleGradMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OPERATOR(grid_sampler_grad, ops::GridSampleOpGrad);
 | |
| 
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     grid_sampler,
 | |
|     ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::GridSampleOpKernel<paddle::platform::CPUDeviceContext, double>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     grid_sampler_grad,
 | |
|     ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::GridSampleGradOpKernel<paddle::platform::CPUDeviceContext, double>);
 | |
| 
 | |
| REGISTER_OP_VERSION(grid_sampler)
 | |
|     .AddCheckpoint(
 | |
|         R"ROC(
 | |
|       Upgrade grid_sampler add a new attribute [mode].
 | |
|     )ROC",
 | |
|         paddle::framework::compatible::OpVersionDesc().NewAttr(
 | |
|             "mode", "In order to specify interpolation mode", "bilinear"));
 |