|  |  | //   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | 
						
						
						
							|  |  | //
 | 
						
						
						
							|  |  | // Licensed under the Apache License, Version 2.0 (the "License");
 | 
						
						
						
							|  |  | // you may not use this file except in compliance with the License.
 | 
						
						
						
							|  |  | // You may obtain a copy of the License at
 | 
						
						
						
							|  |  | //
 | 
						
						
						
							|  |  | //     http://www.apache.org/licenses/LICENSE-2.0
 | 
						
						
						
							|  |  | //
 | 
						
						
						
							|  |  | // Unless required by applicable law or agreed to in writing, software
 | 
						
						
						
							|  |  | // distributed under the License is distributed on an "AS IS" BASIS,
 | 
						
						
						
							|  |  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | 
						
						
						
							|  |  | // See the License for the specific language governing permissions and
 | 
						
						
						
							|  |  | // limitations under the License.
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | #include "paddle/fluid/operators/matmul_v2_op.h"
 | 
						
						
						
							|  |  | #include <string>
 | 
						
						
						
							|  |  | #include <vector>
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | namespace paddle {
 | 
						
						
						
							|  |  | namespace operators {
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | class MatMulV2Op : public framework::OperatorWithKernel {
 | 
						
						
						
							|  |  |  public:
 | 
						
						
						
							|  |  |   using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						
						
						
							|  |  |   void InferShape(framework::InferShapeContext* ctx) const override {
 | 
						
						
						
							|  |  |     OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "matmul_v2");
 | 
						
						
						
							|  |  |     OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "matmul_v2");
 | 
						
						
						
							|  |  |     OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "matmul_v2");
 | 
						
						
						
							|  |  |     bool trans_x = ctx->Attrs().Get<bool>("trans_x");
 | 
						
						
						
							|  |  |     bool trans_y = ctx->Attrs().Get<bool>("trans_y");
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     std::vector<int64_t> dims_x =
 | 
						
						
						
							|  |  |         paddle::framework::vectorize(ctx->GetInputDim("X"));
 | 
						
						
						
							|  |  |     std::vector<int64_t> dims_y =
 | 
						
						
						
							|  |  |         paddle::framework::vectorize(ctx->GetInputDim("Y"));
 | 
						
						
						
							|  |  |     auto ndims_x = dims_x.size();
 | 
						
						
						
							|  |  |     auto ndims_y = dims_y.size();
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     bool x_broadcasted = false, y_broadcasted = false;
 | 
						
						
						
							|  |  |     if (ndims_x == 1) {
 | 
						
						
						
							|  |  |       dims_x.insert(dims_x.begin(), 1);
 | 
						
						
						
							|  |  |       ndims_x = 2;
 | 
						
						
						
							|  |  |       x_broadcasted = true;
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     if (ndims_y == 1) {
 | 
						
						
						
							|  |  |       dims_y.push_back(1);
 | 
						
						
						
							|  |  |       ndims_y = 2;
 | 
						
						
						
							|  |  |       y_broadcasted = true;
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     size_t M, N;
 | 
						
						
						
							|  |  |     if (trans_x) {
 | 
						
						
						
							|  |  |       M = dims_x[ndims_x - 1];
 | 
						
						
						
							|  |  |     } else {
 | 
						
						
						
							|  |  |       M = dims_x[ndims_x - 2];
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |     if (trans_y) {
 | 
						
						
						
							|  |  |       N = dims_y[ndims_y - 2];
 | 
						
						
						
							|  |  |     } else {
 | 
						
						
						
							|  |  |       N = dims_y[ndims_y - 1];
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     std::vector<int64_t> new_dims;
 | 
						
						
						
							|  |  |     if (ndims_x >= ndims_y) {
 | 
						
						
						
							|  |  |       new_dims.assign(dims_x.begin(), dims_x.end() - 2);
 | 
						
						
						
							|  |  |     } else {
 | 
						
						
						
							|  |  |       new_dims.assign(dims_y.begin(), dims_y.end() - 2);
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |     if (!x_broadcasted) {
 | 
						
						
						
							|  |  |       new_dims.push_back(M);
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |     if (!y_broadcasted) {
 | 
						
						
						
							|  |  |       new_dims.push_back(N);
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |     if (x_broadcasted && y_broadcasted) {
 | 
						
						
						
							|  |  |       new_dims.push_back(1);
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     auto out_dims = framework::make_ddim(new_dims);
 | 
						
						
						
							|  |  |     ctx->SetOutputDim("Out", out_dims);
 | 
						
						
						
							|  |  |     ctx->ShareLoD("X", /* --> */ "Out");
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |  protected:
 | 
						
						
						
							|  |  |   framework::OpKernelType GetExpectedKernelType(
 | 
						
						
						
							|  |  |       const framework::ExecutionContext& ctx) const override {
 | 
						
						
						
							|  |  |     auto data_type =
 | 
						
						
						
							|  |  |         OperatorWithKernel::IndicateOrPromoteVarDataTypes(ctx, "X", "Y");
 | 
						
						
						
							|  |  |     return framework::OpKernelType(data_type, ctx.device_context());
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |   framework::OpKernelType GetKernelTypeForVar(
 | 
						
						
						
							|  |  |       const std::string& var_name, const framework::Tensor& tensor,
 | 
						
						
						
							|  |  |       const framework::OpKernelType& expected_kernel_type) const {
 | 
						
						
						
							|  |  |     if (framework::IsComplexType(expected_kernel_type.data_type_)) {
 | 
						
						
						
							|  |  |       // only promote inputs’s types when contains complex input
 | 
						
						
						
							|  |  |       return framework::OpKernelType(tensor.type(), tensor.place(),
 | 
						
						
						
							|  |  |                                      tensor.layout());
 | 
						
						
						
							|  |  |     } else {
 | 
						
						
						
							|  |  |       return framework::OpKernelType(expected_kernel_type.data_type_,
 | 
						
						
						
							|  |  |                                      tensor.place(), tensor.layout());
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | };
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | class MatMulV2OpMaker : public framework::OpProtoAndCheckerMaker {
 | 
						
						
						
							|  |  |  public:
 | 
						
						
						
							|  |  |   void Make() override {
 | 
						
						
						
							|  |  |     AddInput("X", "tensor of shape (d0, d1 ... M, K)");
 | 
						
						
						
							|  |  |     AddInput("Y", "tensor of shape (d0, d1 ... K, N)");
 | 
						
						
						
							|  |  |     AddOutput("Out", "tensor of shape (d0, d1 ... M, N)");
 | 
						
						
						
							|  |  |     AddAttr<bool>("trans_x",
 | 
						
						
						
							|  |  |                   "Set true to transpose the last two dimensions of X before "
 | 
						
						
						
							|  |  |                   "doing multiplication")
 | 
						
						
						
							|  |  |         .SetDefault(false);
 | 
						
						
						
							|  |  |     AddAttr<bool>("trans_y",
 | 
						
						
						
							|  |  |                   "Set true to transpose the last two dimensions of Y before "
 | 
						
						
						
							|  |  |                   "doing multiplication")
 | 
						
						
						
							|  |  |         .SetDefault(false);
 | 
						
						
						
							|  |  |     AddComment(
 | 
						
						
						
							|  |  |         R"DOC(Matrix multiplication Out = X * Y. A has shape (d0, d1 ... M, K), 
 | 
						
						
						
							|  |  |         B has shape (d0, d1 ... K, N), Out has shape ((d0, d1 ... M, N)). 
 | 
						
						
						
							|  |  |         In addition, it also follows the broadcast rule which is similar as
 | 
						
						
						
							|  |  |         numpy.matmul.
 | 
						
						
						
							|  |  | )DOC");
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | };
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | class MatMulV2OpGrad : public framework::OperatorWithKernel {
 | 
						
						
						
							|  |  |  public:
 | 
						
						
						
							|  |  |   using framework::OperatorWithKernel::OperatorWithKernel;
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |  protected:
 | 
						
						
						
							|  |  |   void InferShape(framework::InferShapeContext* context) const override {
 | 
						
						
						
							|  |  |     OP_INOUT_CHECK(context->HasInput("X"), "Input", "X", "matmul_v2");
 | 
						
						
						
							|  |  |     OP_INOUT_CHECK(context->HasInput("Y"), "Input", "Y", "matmul_v2");
 | 
						
						
						
							|  |  |     OP_INOUT_CHECK(context->HasInput(framework::GradVarName("Out")), "Input",
 | 
						
						
						
							|  |  |                    "Out@GRAD", "matmul_v2");
 | 
						
						
						
							|  |  |     auto x_dims = context->GetInputDim("X");
 | 
						
						
						
							|  |  |     auto y_dims = context->GetInputDim("Y");
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     auto x_grad_name = framework::GradVarName("X");
 | 
						
						
						
							|  |  |     auto y_grad_name = framework::GradVarName("Y");
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |     if (context->HasOutput(x_grad_name)) {
 | 
						
						
						
							|  |  |       context->SetOutputDim(x_grad_name, x_dims);
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |     if (context->HasOutput(y_grad_name)) {
 | 
						
						
						
							|  |  |       context->SetOutputDim(y_grad_name, y_dims);
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |   framework::OpKernelType GetExpectedKernelType(
 | 
						
						
						
							|  |  |       const framework::ExecutionContext& ctx) const override {
 | 
						
						
						
							|  |  |     auto out_grad_name = framework::GradVarName("Out");
 | 
						
						
						
							|  |  |     return framework::OpKernelType(
 | 
						
						
						
							|  |  |         OperatorWithKernel::IndicateVarDataType(ctx, out_grad_name),
 | 
						
						
						
							|  |  |         ctx.GetPlace());
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |   framework::OpKernelType GetKernelTypeForVar(
 | 
						
						
						
							|  |  |       const std::string& var_name, const framework::Tensor& tensor,
 | 
						
						
						
							|  |  |       const framework::OpKernelType& expected_kernel_type) const {
 | 
						
						
						
							|  |  |     if (framework::IsComplexType(expected_kernel_type.data_type_)) {
 | 
						
						
						
							|  |  |       // only promote inputs’s types when contains complex input
 | 
						
						
						
							|  |  |       return framework::OpKernelType(tensor.type(), tensor.place(),
 | 
						
						
						
							|  |  |                                      tensor.layout());
 | 
						
						
						
							|  |  |     } else {
 | 
						
						
						
							|  |  |       return framework::OpKernelType(expected_kernel_type.data_type_,
 | 
						
						
						
							|  |  |                                      tensor.place(), tensor.layout());
 | 
						
						
						
							|  |  |     }
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | };
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | template <typename T>
 | 
						
						
						
							|  |  | class MatMulV2GradOpMaker : public framework::SingleGradOpMaker<T> {
 | 
						
						
						
							|  |  |  public:
 | 
						
						
						
							|  |  |   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  |  protected:
 | 
						
						
						
							|  |  |   void Apply(GradOpPtr<T> op) const override {
 | 
						
						
						
							|  |  |     op->SetType("matmul_v2_grad");
 | 
						
						
						
							|  |  |     op->SetInput("X", this->Input("X"));
 | 
						
						
						
							|  |  |     op->SetInput("Y", this->Input("Y"));
 | 
						
						
						
							|  |  |     op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | 
						
						
						
							|  |  |     op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | 
						
						
						
							|  |  |     op->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
 | 
						
						
						
							|  |  |     op->SetAttrMap(this->Attrs());
 | 
						
						
						
							|  |  |   }
 | 
						
						
						
							|  |  | };
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | }  // namespace operators
 | 
						
						
						
							|  |  | }  // namespace paddle
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | namespace ops = paddle::operators;
 | 
						
						
						
							|  |  | REGISTER_OPERATOR(matmul_v2, ops::MatMulV2Op, ops::MatMulV2OpMaker,
 | 
						
						
						
							|  |  |                   ops::MatMulV2GradOpMaker<paddle::framework::OpDesc>,
 | 
						
						
						
							|  |  |                   ops::MatMulV2GradOpMaker<paddle::imperative::OpBase>);
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | REGISTER_OPERATOR(matmul_v2_grad, ops::MatMulV2OpGrad);
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | REGISTER_OP_CPU_KERNEL(
 | 
						
						
						
							|  |  |     matmul_v2, ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, float>,
 | 
						
						
						
							|  |  |     ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext, double>,
 | 
						
						
						
							|  |  |     ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
 | 
						
						
						
							|  |  |                         paddle::platform::complex64>,
 | 
						
						
						
							|  |  |     ops::MatMulV2Kernel<paddle::platform::CPUDeviceContext,
 | 
						
						
						
							|  |  |                         paddle::platform::complex128>);
 | 
						
						
						
							|  |  | 
 | 
						
						
						
							|  |  | REGISTER_OP_CPU_KERNEL(
 | 
						
						
						
							|  |  |     matmul_v2_grad,
 | 
						
						
						
							|  |  |     ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, float>,
 | 
						
						
						
							|  |  |     ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext, double>,
 | 
						
						
						
							|  |  |     ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
 | 
						
						
						
							|  |  |                             paddle::platform::complex64>,
 | 
						
						
						
							|  |  |     ops::MatMulV2GradKernel<paddle::platform::CPUDeviceContext,
 | 
						
						
						
							|  |  |                             paddle::platform::complex128>);
 |