You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							111 lines
						
					
					
						
							4.2 KiB
						
					
					
				
			
		
		
	
	
							111 lines
						
					
					
						
							4.2 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/mean_iou_op.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| class MeanIoUOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Predictions"), "Input", "Predictions",
 | |
|                    "MeanIoU");
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Labels"), "Input", "Labels", "MeanIoU");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("OutMeanIou"), "Output", "OutMeanIou",
 | |
|                    "MeanIoU");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("OutWrong"), "Output", "OutWrong", "MeanIoU");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("OutCorrect"), "Output", "OutCorrect",
 | |
|                    "MeanIoU");
 | |
| 
 | |
|     int64_t num_classes =
 | |
|         static_cast<int64_t>(ctx->Attrs().Get<int>("num_classes"));
 | |
| 
 | |
|     ctx->SetOutputDim("OutMeanIou", {1});
 | |
|     ctx->SetOutputDim("OutWrong", {num_classes});
 | |
|     ctx->SetOutputDim("OutCorrect", {num_classes});
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         OperatorWithKernel::IndicateVarDataType(ctx, "Predictions"),
 | |
|         ctx.GetPlace());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class MeanIoUOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("Predictions",
 | |
|              "(Tensor), A Tensor of prediction results for semantic labels"
 | |
|              " with type int32 or int64. The rank should be greater than 1.");
 | |
|     AddInput(
 | |
|         "Labels",
 | |
|         "(Tensor), A Tensor of ground truth labels with type int32 or int64."
 | |
|         "Its shape should be the same as Input(Predictions).");
 | |
|     AddInput("InWrongs",
 | |
|              "(vector<Tensor>), A list of Tensor with shape "
 | |
|              "[num_classes]. They are used to collect wrong number among "
 | |
|              "batches. Empty list is also valid here.")
 | |
|         .AsDuplicable()
 | |
|         .AsDispensable();
 | |
|     AddInput(
 | |
|         "InCorrects",
 | |
|         "(vector<Tensor>), A list of Tensor with shape "
 | |
|         "[num_classes]. They are used to collect correct number among batches. "
 | |
|         "Empty list is also valid here.")
 | |
|         .AsDuplicable()
 | |
|         .AsDispensable();
 | |
|     AddInput("InMeanIou",
 | |
|              "(vector<Tensor>), A list of Tensor that Output(mean_iou) should "
 | |
|              "be added to. Empty list is also valid here.")
 | |
|         .AsDuplicable()
 | |
|         .AsDispensable();
 | |
|     AddOutput("OutMeanIou",
 | |
|               "(vector<Tensor>), A Tensor representing the"
 | |
|               " mean intersection-over-union with shape [1].");
 | |
|     AddOutput("OutWrong", "(Tensor), A Tensor with shape [num_classes]. ");
 | |
|     AddOutput("OutCorrect", "(Tensor), A Tensor with shape [num_classes]. ");
 | |
|     AddAttr<int>("num_classes", "(int), The possible number of labels.");
 | |
| 
 | |
|     AddComment(R"DOC(
 | |
| mean-IOU Operator.
 | |
| Mean Intersection-Over-Union is a common evaluation metric for
 | |
| semantic image segmentation, which first computes the IOU for each
 | |
| semantic class and then computes the average over classes. 
 | |
| IOU is defined as follows: 
 | |
|     IOU = true_positive / (true_positive + false_positive + false_negative).
 | |
| It is based on pixel level area while "IOU Similarity Operator" 
 | |
| is based on area of rectangle.
 | |
| 
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(
 | |
|     mean_iou, ops::MeanIoUOp, ops::MeanIoUOpMaker,
 | |
|     paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
 | |
|     paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OP_CPU_KERNEL(mean_iou, ops::MeanIoUKernel<int>,
 | |
|                        ops::MeanIoUKernel<int32_t>,
 | |
|                        ops::MeanIoUKernel<int64_t>);
 |