You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							118 lines
						
					
					
						
							4.3 KiB
						
					
					
				
			
		
		
	
	
							118 lines
						
					
					
						
							4.3 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <algorithm>
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| using Tensor = framework::Tensor;
 | |
| 
 | |
| template <typename T, int D, int MajorType = Eigen::RowMajor,
 | |
|           typename IndexType = Eigen::DenseIndex>
 | |
| using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
 | |
| 
 | |
| template <typename T>
 | |
| class MeanIoUKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto& place = *ctx.template device_context<platform::CPUDeviceContext>()
 | |
|                        .eigen_device();
 | |
|     // get input and output tensor
 | |
|     auto* predictions = ctx.Input<Tensor>("Predictions");
 | |
|     auto* labels = ctx.Input<Tensor>("Labels");
 | |
|     auto* out_mean_iou = ctx.Output<Tensor>("OutMeanIou");
 | |
|     auto* out_wrong = ctx.Output<Tensor>("OutWrong");
 | |
|     auto* out_correct = ctx.Output<Tensor>("OutCorrect");
 | |
|     int num_classes = static_cast<int>(ctx.Attr<int>("num_classes"));
 | |
| 
 | |
|     // get data ptr
 | |
|     const T* predictions_data = predictions->data<T>();
 | |
|     const T* labels_data = labels->data<T>();
 | |
|     float* out_mean_iou_data =
 | |
|         out_mean_iou->mutable_data<float>(ctx.GetPlace());
 | |
|     int* out_wrong_data = out_wrong->mutable_data<int>(ctx.GetPlace());
 | |
|     int* out_correct_data = out_correct->mutable_data<int>(ctx.GetPlace());
 | |
| 
 | |
|     // get eigen tensor
 | |
|     auto out_mean_iou_t = EigenTensor<float, 1>::From(*out_mean_iou);
 | |
|     auto out_wrong_t = EigenTensor<int, 1>::From(*out_wrong);
 | |
|     auto out_correct_t = EigenTensor<int, 1>::From(*out_correct);
 | |
| 
 | |
|     // Tmp tensor
 | |
|     Tensor denominator;
 | |
|     Tensor valid_count;
 | |
|     Tensor iou_sum;
 | |
| 
 | |
|     // get data ptr of tmp tensor
 | |
|     int* denominator_data = denominator.mutable_data<int>(
 | |
|         {static_cast<int64_t>(num_classes)}, ctx.GetPlace());
 | |
|     int* valid_count_data = valid_count.mutable_data<int>({1}, ctx.GetPlace());
 | |
|     float* iou_sum_data = iou_sum.mutable_data<float>({1}, ctx.GetPlace());
 | |
| 
 | |
|     // get eigen tensor of tmp tensor
 | |
|     auto denominator_t = EigenTensor<int, 1>::From(denominator);
 | |
|     auto valid_count_t = EigenTensor<int, 1>::From(valid_count);
 | |
|     auto iou_sum_t = EigenTensor<float, 1>::From(iou_sum);
 | |
| 
 | |
|     // init out_wrong, out_correct and out_mean_iou
 | |
|     out_wrong_t = out_wrong_t.constant(0);
 | |
|     out_correct_t = out_correct_t.constant(0);
 | |
|     out_mean_iou_t = out_mean_iou_t.constant(0);
 | |
| 
 | |
|     // collect pre wrong, correct and mean_iou
 | |
|     auto in_mean_ious = ctx.MultiInput<Tensor>("InMeanIou");
 | |
|     for (size_t i = 0; i < in_mean_ious.size(); ++i) {
 | |
|       out_mean_iou_t.device(place) +=
 | |
|           EigenTensor<float, 1>::From(*in_mean_ious[i]);
 | |
|     }
 | |
|     auto in_wrongs = ctx.MultiInput<Tensor>("InWrongs");
 | |
|     for (size_t i = 0; i < in_wrongs.size(); ++i) {
 | |
|       out_wrong_t.device(place) += EigenTensor<int, 1>::From(*in_wrongs[i]);
 | |
|     }
 | |
|     auto in_corrects = ctx.MultiInput<Tensor>("InCorrects");
 | |
|     for (size_t i = 0; i < in_corrects.size(); ++i) {
 | |
|       out_correct_t.device(place) += EigenTensor<int, 1>::From(*in_corrects[i]);
 | |
|     }
 | |
| 
 | |
|     // compute
 | |
|     for (int64_t i = 0; i < predictions->numel(); ++i) {
 | |
|       if (predictions_data[i] == labels_data[i]) {
 | |
|         out_correct_data[predictions_data[i]] += 1;
 | |
|       } else {
 | |
|         out_wrong_data[labels_data[i]] += 1;
 | |
|         out_wrong_data[predictions_data[i]] += 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     denominator_t = out_wrong_t + out_correct_t;
 | |
|     valid_count_t =
 | |
|         (denominator_t > denominator_t.constant(0.0f)).cast<int>().sum();
 | |
| 
 | |
|     for (int i = 0; i < num_classes; ++i) {
 | |
|       if (denominator_data[i] == 0) {
 | |
|         denominator_data[i] = 1;
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     iou_sum_t =
 | |
|         (out_correct_t.cast<float>() / denominator_t.cast<float>()).sum();
 | |
|     out_mean_iou_data[0] += (iou_sum_data[0] / valid_count_data[0]);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |