You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							249 lines
						
					
					
						
							8.4 KiB
						
					
					
				
			
		
		
	
	
							249 lines
						
					
					
						
							8.4 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include "paddle/fluid/operators/pad_constant_like_op.h"
 | |
| #include <memory>
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| 
 | |
| class PadConstantLikeOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "PadConstantLike");
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "PadConstantLike");
 | |
|     OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "PadConstantLike");
 | |
| 
 | |
|     auto x_dim = ctx->GetInputDim("X");
 | |
|     auto y_dim = ctx->GetInputDim("Y");
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(x_dim.size(), y_dim.size(),
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "The size of Input(X)'s dimension and the size of "
 | |
|                           "Input(Y)'s dimension should be the same, but "
 | |
|                           "received %d for Input(X) vs %d for Input(Y).",
 | |
|                           x_dim.size(), y_dim.size()));
 | |
| 
 | |
|     for (int i = 0; i < x_dim.size(); ++i) {
 | |
|       if ((!ctx->IsRuntime()) && ((x_dim[i] == -1) || (y_dim[i] == -1))) {
 | |
|         continue;
 | |
|       } else {
 | |
|         PADDLE_ENFORCE_GE(
 | |
|             x_dim[i], y_dim[i],
 | |
|             platform::errors::InvalidArgument(
 | |
|                 "The size of each dimension of Input(X) expected to be greater "
 | |
|                 "than or equal to size of corresponding dimension of Input(Y) "
 | |
|                 "(X_dim[i] >= Y_dim[i]), but received %d < %d for dimension %d",
 | |
|                 x_dim[i], y_dim[i], i));
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     ctx->SetOutputDim("Out", x_dim);
 | |
|     ctx->ShareLoD("X", /*->*/ "Out");
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext &ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         OperatorWithKernel::IndicateVarDataType(ctx, "Y"),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class PadConstantLikeOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X",
 | |
|              "The input of pad_constant_like op. "
 | |
|              "The input should be a k-D tensor(k > 0 and k < 7)");
 | |
|     AddInput("Y",
 | |
|              "The input of pad_constant_like op. "
 | |
|              "The input should be a k-D tensor(k > 0 and k < 7)");
 | |
|     AddOutput("Out",
 | |
|               "The output of pad_constant_like op. "
 | |
|               "A tensor with the same shape as X.");
 | |
|     AddAttr<float>("pad_value",
 | |
|                    "(float, default 0.0) "
 | |
|                    "The value to fill the padded areas.")
 | |
|         .SetDefault(0.0f);
 | |
|     AddComment(R"DOC(
 | |
| PadConstantLikeOp Operator.
 | |
| 
 | |
| Pad input(Y) with a pad_value, the number of values padded to the edges of each
 | |
| axis is specified by the difference of the shape of X and Y.
 | |
| ((0, shape_x_0 - shape_y_0), ... (0, shape_x_n - shape_y_n)) unique pad widths for
 | |
| each axis.
 | |
| The input should be a k-D tensor(k > 0 and k < 7). As an example:
 | |
| 
 | |
| case1:
 | |
|     Given:
 | |
|         X = [[1, 2],
 | |
|              [3, 4],
 | |
|              [1, 2],
 | |
|              [3, 4]]],
 | |
|         X.shape = (4, 2)
 | |
| 
 | |
|         Y = [[5, 6],
 | |
|             [7, 8]],
 | |
|         Y.shape = (2, 2)
 | |
| 
 | |
|     And
 | |
|         pad_value = 0,
 | |
| 
 | |
|     Return:
 | |
|         Out = [[5, 6],
 | |
|                [7, 8],
 | |
|                [0, 0],
 | |
|                [0, 0]]
 | |
|         Out.shape = (4, 2)
 | |
| 
 | |
| case2:
 | |
|     Given:
 | |
|         X = [[[[ 0,  1,  2],
 | |
|                [ 3,  4,  5]],
 | |
|               [[ 6,  7,  8],
 | |
|                [ 9, 10, 11]],
 | |
|               [[12, 13, 14],
 | |
|                [15, 16, 17]]],
 | |
|              [[[18, 19, 20],
 | |
|                [21, 22, 23]],
 | |
|               [[24, 25, 26],
 | |
|                [27, 28, 29]],
 | |
|               [[30, 31, 32],
 | |
|                [33, 34, 35]]]]
 | |
|         X.shape = (2, 3, 2, 3)
 | |
| 
 | |
|         Y = [[[[35, 36, 37]],
 | |
|               [[38, 39, 40]],
 | |
|               [[41, 42, 43]]]]
 | |
|         Y.shape = (1, 3, 1, 3)
 | |
| 
 | |
|     And
 | |
|         pad_value = -1,
 | |
| 
 | |
|     Return:
 | |
| 
 | |
|         Out = [[[[35, 36, 37],
 | |
|                  [-1, -1, -1]],
 | |
|                 [[38, 39, 40],
 | |
|                  [-1, -1, -1]],
 | |
|                 [[41, 42, 43],
 | |
|                  [-1, -1, -1]]],
 | |
|                [[[-1, -1, -1],
 | |
|                  [-1, -1, -1]],
 | |
|                 [[-1, -1, -1],
 | |
|                  [-1, -1, -1]],
 | |
|                 [[-1, -1, -1],
 | |
|                  [-1, -1, -1]]]]
 | |
|         Out.shape = (2, 3, 2, 3)
 | |
| )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| class PadConstantLikeOpGrad : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext *ctx) const override {
 | |
|     OP_INOUT_CHECK(ctx->HasInput("Y"), "Input", "Y", "PadConstantLike@Grad");
 | |
|     OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input",
 | |
|                    framework::GradVarName("Out"), "PadConstantLike@Grad");
 | |
| 
 | |
|     auto y_dim = ctx->GetInputDim("Y");
 | |
|     auto dout_dim = ctx->GetInputDim(framework::GradVarName("Out"));
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(
 | |
|         dout_dim.size(), y_dim.size(),
 | |
|         platform::errors::InvalidArgument(
 | |
|             "Op(PadConstantLike@Grad) the size of Input(Out@Grad)'s dimension "
 | |
|             "and the size of Input(Y)'s dimension should be the same, but "
 | |
|             "received %d for Input(Out@Grad) vs %d for Input(Y).",
 | |
|             dout_dim.size(), y_dim.size()));
 | |
| 
 | |
|     auto y_grad_name = framework::GradVarName("Y");
 | |
|     if (ctx->HasOutput(y_grad_name)) {
 | |
|       ctx->SetOutputDim(y_grad_name, y_dim);
 | |
|       ctx->ShareLoD("Y", /*->*/ y_grad_name);
 | |
| 
 | |
|       for (int i = 0; i < y_dim.size(); ++i) {
 | |
|         if ((!ctx->IsRuntime()) && ((dout_dim[i] == -1) || (y_dim[i] == -1))) {
 | |
|           continue;
 | |
|         } else {
 | |
|           PADDLE_ENFORCE_GE(
 | |
|               dout_dim[i], y_dim[i],
 | |
|               platform::errors::InvalidArgument(
 | |
|                   "The size of each dimension of Input(Out@Grad) expected to "
 | |
|                   "be greater than or equal to size of corresponding dimension "
 | |
|                   "of Input(Y) (Out_dim[i] >= Y_dim[i]), but received %d < %d "
 | |
|                   "for dimension %d",
 | |
|                   dout_dim[i], y_dim[i], i));
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext &ctx) const override {
 | |
|     return framework::OpKernelType(
 | |
|         OperatorWithKernel::IndicateVarDataType(ctx, "Y"),
 | |
|         ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class PadConstantLikeOpGradMaker : public framework::SingleGradOpMaker<T> {
 | |
|  public:
 | |
|   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | |
| 
 | |
|  protected:
 | |
|   void Apply(GradOpPtr<T> bind) const override {
 | |
|     bind->SetType("pad_constant_like_grad");
 | |
|     bind->SetInput("Y", this->Input("Y"));
 | |
|     bind->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | |
|     bind->SetOutput(framework::GradVarName("Y"), this->InputGrad("Y"));
 | |
|     bind->SetAttrMap(this->Attrs());
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| 
 | |
| REGISTER_OPERATOR(pad_constant_like, ops::PadConstantLikeOp,
 | |
|                   ops::PadConstantLikeOpMaker,
 | |
|                   ops::PadConstantLikeOpGradMaker<paddle::framework::OpDesc>,
 | |
|                   ops::PadConstantLikeOpGradMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OPERATOR(pad_constant_like_grad, ops::PadConstantLikeOpGrad);
 | |
| 
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     pad_constant_like,
 | |
|     ops::PadConstantLikeKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::PadConstantLikeKernel<paddle::platform::CPUDeviceContext, double>,
 | |
|     ops::PadConstantLikeKernel<paddle::platform::CPUDeviceContext, int>,
 | |
|     ops::PadConstantLikeKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     pad_constant_like_grad,
 | |
|     ops::PadConstantLikeGradKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::PadConstantLikeGradKernel<paddle::platform::CPUDeviceContext, double>,
 | |
|     ops::PadConstantLikeGradKernel<paddle::platform::CPUDeviceContext, int>,
 | |
|     ops::PadConstantLikeGradKernel<paddle::platform::CPUDeviceContext,
 | |
|                                    int64_t>);
 |