You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							92 lines
						
					
					
						
							2.9 KiB
						
					
					
				
			
		
		
	
	
							92 lines
						
					
					
						
							2.9 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <utility>
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/tensor.h"
 | |
| #include "paddle/fluid/framework/tensor_util.h"
 | |
| #include "paddle/fluid/operators/math/padding.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class PadConstantLikeKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto in_x = context.Input<framework::Tensor>("X");
 | |
|     auto in_y = context.Input<framework::Tensor>("Y");
 | |
|     auto* out = context.Output<framework::Tensor>("Out");
 | |
| 
 | |
|     if (in_x->dims() == in_y->dims()) {
 | |
|       framework::TensorCopy(*in_y, context.GetPlace(), out);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     T pad_value = static_cast<T>(context.Attr<float>("pad_value"));
 | |
|     out->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     int rank = context.Input<framework::Tensor>("X")->dims().size();
 | |
| 
 | |
|     std::vector<int> pads(rank * 2, 0);
 | |
| 
 | |
|     for (int j = 0; j < rank; ++j) {
 | |
|       pads[j * 2] = 0;
 | |
|       pads[j * 2 + 1] = static_cast<int>(in_x->dims()[j] - in_y->dims()[j]);
 | |
|     }
 | |
| 
 | |
|     math::PaddingFunctor<DeviceContext, T>(rank, context, pads, pad_value,
 | |
|                                            *in_y, out);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class PadConstantLikeGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto in_y = context.Input<framework::Tensor>("Y");
 | |
|     auto in_dout =
 | |
|         context.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* d_y = context.Output<framework::Tensor>(framework::GradVarName("Y"));
 | |
| 
 | |
|     if (d_y == nullptr) {
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     if (in_dout->dims() == in_y->dims()) {
 | |
|       framework::TensorCopy(*in_dout, context.GetPlace(), d_y);
 | |
|       return;
 | |
|     }
 | |
| 
 | |
|     d_y->mutable_data<T>(context.GetPlace());
 | |
|     int rank = in_dout->dims().size();
 | |
| 
 | |
|     std::vector<int> pads(static_cast<size_t>(rank) * 2, 0);
 | |
|     for (int j = 0; j < rank; ++j) {
 | |
|       pads[j * 2] = 0;
 | |
|       pads[j * 2 + 1] = static_cast<int>(in_dout->dims()[j] - in_y->dims()[j]);
 | |
|     }
 | |
| 
 | |
|     math::PaddingGradFunctor<DeviceContext, T>(rank, context, pads, *in_dout,
 | |
|                                                d_y);
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |