You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							114 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
	
	
							114 lines
						
					
					
						
							4.1 KiB
						
					
					
				| /* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <unordered_map>
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/eigen.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using Tensor = framework::Tensor;
 | |
| using LoDTensor = framework::LoDTensor;
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class PositiveNegativePairKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   struct PredictionResult {
 | |
|     PredictionResult(T score, T label, T weight)
 | |
|         : score(score), label(label), weight(weight) {}
 | |
|     T score;
 | |
|     T label;
 | |
|     T weight;
 | |
|   };
 | |
| 
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto score_t = context.Input<Tensor>("Score");
 | |
|     auto label_t = context.Input<Tensor>("Label");
 | |
|     auto query_t = context.Input<Tensor>("QueryID");
 | |
|     auto acc_positive_t = context.Input<Tensor>("AccumulatePositivePair");
 | |
|     auto acc_negative_t = context.Input<Tensor>("AccumulateNegativePair");
 | |
|     auto acc_neutral_t = context.Input<Tensor>("AccumulateNeutralPair");
 | |
|     auto positive_t = context.Output<Tensor>("PositivePair");
 | |
|     auto negative_t = context.Output<Tensor>("NegativePair");
 | |
|     auto neutral_t = context.Output<Tensor>("NeutralPair");
 | |
|     auto weight_t = context.Input<Tensor>("Weight");
 | |
| 
 | |
|     auto score = score_t->data<T>();
 | |
|     auto label = label_t->data<T>();
 | |
|     auto query = query_t->data<int64_t>();
 | |
|     const T* weight = nullptr;
 | |
|     if (weight_t != nullptr) {
 | |
|       weight = weight_t->data<T>();
 | |
|     }
 | |
|     T* positive = positive_t->mutable_data<T>(context.GetPlace());
 | |
|     T* negative = negative_t->mutable_data<T>(context.GetPlace());
 | |
|     T* neutral = neutral_t->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     auto score_dim = score_t->dims();
 | |
|     auto batch_size = score_dim[0];
 | |
|     auto width = score_dim[1];
 | |
|     auto column = context.Attr<int32_t>("column");
 | |
|     if (column < 0) {
 | |
|       column += width;
 | |
|     }
 | |
| 
 | |
|     // construct document instances for each query: Query => List[<score#0,
 | |
|     // label#0, weight#0>, ...]
 | |
|     std::unordered_map<int64_t, std::vector<PredictionResult>> predictions;
 | |
|     for (auto i = 0; i < batch_size; ++i) {
 | |
|       if (predictions.find(query[i]) == predictions.end()) {
 | |
|         predictions.emplace(
 | |
|             std::make_pair(query[i], std::vector<PredictionResult>()));
 | |
|       }
 | |
|       predictions[query[i]].emplace_back(score[i * width + column], label[i],
 | |
|                                          weight_t != nullptr ? weight[i] : 1.0);
 | |
|     }
 | |
| 
 | |
|     // for each query, accumulate pair counts
 | |
|     T pos = 0, neg = 0, neu = 0;
 | |
|     if (acc_positive_t != nullptr && acc_negative_t != nullptr &&
 | |
|         acc_neutral_t != nullptr) {
 | |
|       pos = acc_positive_t->data<T>()[0];
 | |
|       neg = acc_negative_t->data<T>()[0];
 | |
|       neu = acc_neutral_t->data<T>()[0];
 | |
|     }
 | |
|     auto evaluate_one_list = [&pos, &neg,
 | |
|                               &neu](std::vector<PredictionResult> vec) {
 | |
|       for (auto ite1 = vec.begin(); ite1 != vec.end(); ++ite1) {
 | |
|         for (auto ite2 = ite1 + 1; ite2 != vec.end(); ++ite2) {
 | |
|           if (ite1->label == ite2->label) {  // labels are equal, ignore.
 | |
|             continue;
 | |
|           }
 | |
|           T w = (ite1->weight + ite2->weight) * 0.5;
 | |
|           if (ite1->score == ite2->score) {
 | |
|             neu += w;
 | |
|           }
 | |
|           (ite1->score - ite2->score) * (ite1->label - ite2->label) > 0.0
 | |
|               ? pos += w
 | |
|               : neg += w;
 | |
|         }
 | |
|       }
 | |
|     };
 | |
|     for (auto prediction : predictions) {
 | |
|       evaluate_one_list(prediction.second);
 | |
|     }
 | |
|     *positive = pos;
 | |
|     *negative = neg;
 | |
|     *neutral = neu;
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |