You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							159 lines
						
					
					
						
							6.2 KiB
						
					
					
				
			
		
		
	
	
							159 lines
						
					
					
						
							6.2 KiB
						
					
					
				| // Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| //
 | |
| // Licensed under the Apache License, Version 2.0 (the "License");
 | |
| // you may not use this file except in compliance with the License.
 | |
| // You may obtain a copy of the License at
 | |
| //
 | |
| //     http://www.apache.org/licenses/LICENSE-2.0
 | |
| //
 | |
| // Unless required by applicable law or agreed to in writing, software
 | |
| // distributed under the License is distributed on an "AS IS" BASIS,
 | |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| // See the License for the specific language governing permissions and
 | |
| // limitations under the License.
 | |
| 
 | |
| #include "paddle/fluid/operators/roll_op.h"
 | |
| #include <memory>
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/op_version_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| using framework::Tensor;
 | |
| 
 | |
| class RollOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(ctx->HasInput("X"), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(X) of RollOp should not be null."));
 | |
|     PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Output(Out) of RollOp should not be null."));
 | |
| 
 | |
|     auto dims = ctx->Attrs().Get<std::vector<int64_t>>("axis");
 | |
|     auto shifts = ctx->Attrs().Get<std::vector<int64_t>>("shifts");
 | |
| 
 | |
|     PADDLE_ENFORCE_EQ(dims.size(), shifts.size(),
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Attr(dims).size() should be equl to "
 | |
|                           "Attr(shifts).size(). But received "
 | |
|                           "Attr(dims).size() = %d, Attr(shifts).size() = %d",
 | |
|                           dims.size(), shifts.size()));
 | |
| 
 | |
|     ctx->SetOutputDim("Out", ctx->GetInputDim("X"));
 | |
|     auto type = ctx->GetInputsVarType("X")[0];
 | |
|     if (type == framework::proto::VarType::LOD_TENSOR) {
 | |
|       ctx->ShareLoD("X", /*->*/ "Out");
 | |
|     }
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "X");
 | |
|     return framework::OpKernelType(data_type, ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class RollGradOp : public framework::OperatorWithKernel {
 | |
|  public:
 | |
|   using framework::OperatorWithKernel::OperatorWithKernel;
 | |
| 
 | |
|   void InferShape(framework::InferShapeContext* ctx) const override {
 | |
|     PADDLE_ENFORCE_EQ(ctx->HasInput(framework::GradVarName("Out")), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Input(Out@GRAD) should be not null."));
 | |
|     PADDLE_ENFORCE_EQ(ctx->HasOutput(framework::GradVarName("X")), true,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "Output(X@GRAD) should be not null."));
 | |
| 
 | |
|     ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X"));
 | |
|   }
 | |
| 
 | |
|  protected:
 | |
|   framework::OpKernelType GetExpectedKernelType(
 | |
|       const framework::ExecutionContext& ctx) const override {
 | |
|     return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
 | |
|                                        ctx, framework::GradVarName("Out")),
 | |
|                                    ctx.device_context());
 | |
|   }
 | |
| };
 | |
| 
 | |
| class RollOpMaker : public framework::OpProtoAndCheckerMaker {
 | |
|  public:
 | |
|   void Make() override {
 | |
|     AddInput("X", "(Tensor) the input tensor.");
 | |
|     AddOutput("Out", "(Tensor), the output tensor.");
 | |
|     AddAttr<std::vector<int64_t>>("shifts",
 | |
|                                   "The number of places by which the elements "
 | |
|                                   "of the tensor are shifted.")
 | |
|         .SetDefault({});
 | |
|     AddAttr<std::vector<int64_t>>(
 | |
|         "axis",
 | |
|         "Axis along which to roll. It must have the same size "
 | |
|         "with shifts.")
 | |
|         .SetDefault({});
 | |
|     AddComment(R"DOC(
 | |
|     Roll the tensor along the given dimension(s). 
 | |
|     Elements that are shifted beyond the last position
 | |
|     are re-introduced at the first position. If a dimension
 | |
|     is not specified, the tensor will be flattened before 
 | |
|     rolling and then restored to the original shape.
 | |
|     )DOC");
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class RollGradMaker : public framework::SingleGradOpMaker<T> {
 | |
|  public:
 | |
|   using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
 | |
| 
 | |
|  protected:
 | |
|   void Apply(GradOpPtr<T> op) const override {
 | |
|     op->SetType("roll_grad");
 | |
|     op->SetInput("X", this->Input("X"));
 | |
|     op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
 | |
|     op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
 | |
|     op->SetAttrMap(this->Attrs());
 | |
|   }
 | |
| };
 | |
| 
 | |
| DECLARE_NO_NEED_BUFFER_VARS_INFERER(RollGradNoNeedBufferVarsInferer, "X");
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OPERATOR(roll, ops::RollOp, ops::RollOpMaker,
 | |
|                   ops::RollGradMaker<paddle::framework::OpDesc>,
 | |
|                   ops::RollGradMaker<paddle::imperative::OpBase>);
 | |
| REGISTER_OPERATOR(roll_grad, ops::RollGradOp,
 | |
|                   ops::RollGradNoNeedBufferVarsInferer);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     roll, ops::RollKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::RollKernel<paddle::platform::CPUDeviceContext, double>,
 | |
|     ops::RollKernel<paddle::platform::CPUDeviceContext, int>,
 | |
|     ops::RollKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | |
| REGISTER_OP_CPU_KERNEL(
 | |
|     roll_grad, ops::RollGradKernel<paddle::platform::CPUDeviceContext, float>,
 | |
|     ops::RollGradKernel<paddle::platform::CPUDeviceContext, double>,
 | |
|     ops::RollGradKernel<paddle::platform::CPUDeviceContext, int>,
 | |
|     ops::RollGradKernel<paddle::platform::CPUDeviceContext, int64_t>);
 | |
| 
 | |
| REGISTER_OP_VERSION(roll)
 | |
|     .AddCheckpoint(
 | |
|         R"ROC(
 | |
|       Upgrade roll add 1 attribute [axis], delete 1 attribute[dims].
 | |
|     )ROC",
 | |
|         paddle::framework::compatible::OpVersionDesc()
 | |
|             .NewAttr("axis",
 | |
|                      "(std::vector<int64_t>) Axis along which to roll. "
 | |
|                      "It must have the same size with shifts.",
 | |
|                      std::vector<int64_t>())
 | |
|             .DeleteAttr("dims",
 | |
|                         "(std::vector<int64_t>) Dims along which to roll. "
 | |
|                         "It must have the same size with shifts."));
 |