You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							96 lines
						
					
					
						
							3.3 KiB
						
					
					
				
			
		
		
	
	
							96 lines
						
					
					
						
							3.3 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| #include <algorithm>
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ShuffleChannelOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto* input = ctx.Input<framework::Tensor>("X");
 | |
|     auto* output = ctx.Output<framework::Tensor>("Out");
 | |
|     int group = ctx.Attr<int>("group");
 | |
| 
 | |
|     auto input_dims = input->dims();
 | |
|     auto num = input_dims[0];
 | |
|     auto channel = input_dims[1];
 | |
|     auto height = input_dims[2];
 | |
|     auto weight = input_dims[3];
 | |
| 
 | |
|     auto feature_map_size = channel * height * weight;
 | |
|     auto sp_sz = height * weight;
 | |
|     int group_row = group;
 | |
|     int group_column = channel / group_row;
 | |
| 
 | |
|     const T* input_data = input->data<T>();
 | |
|     T* output_data = output->mutable_data<T>(ctx.GetPlace());
 | |
|     for (int n = 0; n < num; ++n) {
 | |
|       for (int i = 0; i < group_row; ++i) {
 | |
|         for (int j = 0; j < group_column; ++j) {
 | |
|           const T* p_i = input_data + n * feature_map_size +
 | |
|                          (i * group_column + j) * sp_sz;
 | |
|           T* p_o =
 | |
|               output_data + n * feature_map_size + (j * group_row + i) * sp_sz;
 | |
|           memcpy(p_o, p_i, sizeof(int) * sp_sz);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class ShuffleChannelGradOpKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& ctx) const override {
 | |
|     auto* output_grad =
 | |
|         ctx.Input<framework::Tensor>(framework::GradVarName("Out"));
 | |
|     auto* input_grad =
 | |
|         ctx.Output<framework::Tensor>(framework::GradVarName("X"));
 | |
| 
 | |
|     int group = ctx.Attr<int>("group");
 | |
| 
 | |
|     const auto& input_dims = input_grad->dims();
 | |
|     auto num = input_dims[0];
 | |
|     auto channel = input_dims[1];
 | |
|     auto height = input_dims[2];
 | |
|     auto weight = input_dims[3];
 | |
|     auto feature_map_size = channel * height * weight;
 | |
|     auto sp_sz = height * weight;
 | |
| 
 | |
|     int group_row = group;
 | |
|     int group_column = channel / group_row;
 | |
| 
 | |
|     T* input_grad_data = input_grad->mutable_data<T>(ctx.GetPlace());
 | |
|     const T* output_grad_data = output_grad->data<T>();
 | |
|     for (int n = 0; n < num; ++n) {
 | |
|       for (int i = 0; i < group_row; ++i) {
 | |
|         for (int j = 0; j < group_column; ++j) {
 | |
|           const T* p_i = output_grad_data + n * feature_map_size +
 | |
|                          (i * group_column + j) * sp_sz;
 | |
|           T* p_o = input_grad_data + n * feature_map_size +
 | |
|                    (j * group_row + i) * sp_sz;
 | |
|           memcpy(p_o, p_i, sizeof(int) * sp_sz);
 | |
|         }
 | |
|       }
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |