You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							127 lines
						
					
					
						
							4.1 KiB
						
					
					
				
			
		
		
	
	
							127 lines
						
					
					
						
							4.1 KiB
						
					
					
				| /* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #include <thrust/random.h>
 | |
| #include <thrust/transform.h>
 | |
| #include <limits>
 | |
| #include "paddle/fluid/framework/generator.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/framework/operator.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename T>
 | |
| struct TruncatedNormal {
 | |
|   T mean, std;
 | |
|   T a_normal_cdf;
 | |
|   T b_normal_cdf;
 | |
|   unsigned int seed;
 | |
|   T numeric_min;
 | |
| 
 | |
|   __host__ __device__ TruncatedNormal(T mean, T std, T numeric_min, int seed)
 | |
|       : mean(mean), std(std), seed(seed), numeric_min(numeric_min) {
 | |
|     a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0;
 | |
|     b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0;
 | |
|   }
 | |
| 
 | |
|   __host__ __device__ T operator()(const unsigned int n) const {
 | |
|     thrust::minstd_rand rng;
 | |
|     rng.seed(seed);
 | |
|     thrust::uniform_real_distribution<T> dist(numeric_min, 1);
 | |
|     rng.discard(n);
 | |
|     T value = dist(rng);
 | |
|     auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
 | |
|     return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| struct TruncatedNormalOffset {
 | |
|   T mean, std;
 | |
|   T a_normal_cdf;
 | |
|   T b_normal_cdf;
 | |
|   unsigned int seed;
 | |
|   T numeric_min;
 | |
|   int offset_;
 | |
| 
 | |
|   __host__ __device__ TruncatedNormalOffset(T mean, T std, T numeric_min,
 | |
|                                             int seed, int offset)
 | |
|       : mean(mean),
 | |
|         std(std),
 | |
|         seed(seed),
 | |
|         numeric_min(numeric_min),
 | |
|         offset_(offset) {
 | |
|     a_normal_cdf = (1.0 + erff(-2.0 / sqrtf(2.0))) / 2.0;
 | |
|     b_normal_cdf = (1.0 + erff(2.0 / sqrtf(2.0))) / 2.0;
 | |
|   }
 | |
| 
 | |
|   __host__ __device__ T operator()(const unsigned int n) const {
 | |
|     thrust::minstd_rand rng;
 | |
|     rng.seed(seed);
 | |
|     thrust::uniform_real_distribution<T> dist(numeric_min, 1);
 | |
|     rng.discard(n + offset_);
 | |
|     T value = dist(rng);
 | |
|     auto p = a_normal_cdf + (b_normal_cdf - a_normal_cdf) * value;
 | |
|     return std::sqrt(2.0) * erfinvf(2 * p - 1) * std + mean;
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename T>
 | |
| class GPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     auto* tensor = context.Output<framework::Tensor>("Out");
 | |
|     T* data = tensor->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
 | |
|     bool seed_flag = false;
 | |
|     if (seed == 0) {
 | |
|       std::random_device rd;
 | |
|       seed = rd();
 | |
|       seed_flag = true;
 | |
|     }
 | |
|     T mean = static_cast<T>(context.Attr<float>("mean"));
 | |
|     T std = static_cast<T>(context.Attr<float>("std"));
 | |
|     thrust::counting_iterator<unsigned int> index_sequence_begin(0);
 | |
|     int64_t size = tensor->numel();
 | |
| 
 | |
|     int device_id =
 | |
|         BOOST_GET_CONST(platform::CUDAPlace, context.GetPlace()).GetDeviceId();
 | |
|     auto gen_cuda = framework::GetDefaultCUDAGenerator(device_id);
 | |
| 
 | |
|     if (gen_cuda->GetIsInitPy() && seed_flag) {
 | |
|       auto seed_offset = gen_cuda->IncrementOffset(1);
 | |
|       int gen_offset = size * seed_offset.second;
 | |
|       thrust::transform(
 | |
|           index_sequence_begin, index_sequence_begin + size,
 | |
|           thrust::device_ptr<T>(data),
 | |
|           TruncatedNormalOffset<T>(mean, std, std::numeric_limits<T>::min(),
 | |
|                                    seed_offset.first, gen_offset));
 | |
|     } else {
 | |
|       thrust::transform(
 | |
|           index_sequence_begin, index_sequence_begin + size,
 | |
|           thrust::device_ptr<T>(data),
 | |
|           TruncatedNormal<T>(mean, std, std::numeric_limits<T>::min(), seed));
 | |
|     }
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| REGISTER_OP_CUDA_KERNEL(
 | |
|     truncated_gaussian_random,
 | |
|     paddle::operators::GPUTruncatedGaussianRandomKernel<float>);
 |