You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							66 lines
						
					
					
						
							2.3 KiB
						
					
					
				
			
		
		
	
	
							66 lines
						
					
					
						
							2.3 KiB
						
					
					
				| /* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #ifdef PADDLE_WITH_XPU
 | |
| 
 | |
| #include "paddle/fluid/operators/truncated_gaussian_random_op.h"
 | |
| #include <limits>
 | |
| #include <random>
 | |
| #include "paddle/fluid/framework/generator.h"
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class XPUTruncatedGaussianRandomKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext& context) const override {
 | |
|     float mean = context.Attr<float>("mean");
 | |
|     float std = context.Attr<float>("std");
 | |
|     auto* tensor = context.Output<framework::Tensor>("Out");
 | |
|     T* data = tensor->mutable_data<T>(context.GetPlace());
 | |
| 
 | |
|     std::uniform_real_distribution<T> dist(std::numeric_limits<float>::min(),
 | |
|                                            1.0);
 | |
|     TruncatedNormal<T> truncated_normal(mean, std);
 | |
|     int64_t size = tensor->numel();
 | |
| 
 | |
|     unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
 | |
|     // TODO(pangyoki): implement GetXPURandomEngine to set different seeds on
 | |
|     // corresponding XPU device.
 | |
|     auto engine = framework::GetCPURandomEngine(seed);
 | |
| 
 | |
|     std::unique_ptr<T[]> data_cpu(new T[size]);
 | |
| 
 | |
|     for (int64_t i = 0; i < size; ++i) {
 | |
|       data_cpu[i] = truncated_normal(dist(*engine));
 | |
|     }
 | |
| 
 | |
|     memory::Copy(BOOST_GET_CONST(platform::XPUPlace, context.GetPlace()), data,
 | |
|                  platform::CPUPlace(), reinterpret_cast<void*>(data_cpu.get()),
 | |
|                  size * sizeof(T));
 | |
|   }
 | |
| };
 | |
| 
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 | |
| 
 | |
| namespace ops = paddle::operators;
 | |
| REGISTER_OP_XPU_KERNEL(truncated_gaussian_random,
 | |
|                        ops::XPUTruncatedGaussianRandomKernel<
 | |
|                            paddle::platform::XPUDeviceContext, float>);
 | |
| 
 | |
| #endif  // PADDLE_WITH_XPU
 |