You can not select more than 25 topics
			Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
		
		
		
		
		
			
		
			
				
					
					
						
							141 lines
						
					
					
						
							5.2 KiB
						
					
					
				
			
		
		
	
	
							141 lines
						
					
					
						
							5.2 KiB
						
					
					
				| /* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
 | |
| 
 | |
| Licensed under the Apache License, Version 2.0 (the "License");
 | |
| you may not use this file except in compliance with the License.
 | |
| You may obtain a copy of the License at
 | |
| 
 | |
|     http://www.apache.org/licenses/LICENSE-2.0
 | |
| 
 | |
| Unless required by applicable law or agreed to in writing, software
 | |
| distributed under the License is distributed on an "AS IS" BASIS,
 | |
| WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 | |
| See the License for the specific language governing permissions and
 | |
| limitations under the License. */
 | |
| 
 | |
| #pragma once
 | |
| 
 | |
| #include <vector>
 | |
| #include "paddle/fluid/framework/op_registry.h"
 | |
| #include "paddle/fluid/operators/math/blas.h"
 | |
| #include "paddle/fluid/operators/math/math_function.h"
 | |
| #include "paddle/fluid/operators/math/pooling.h"
 | |
| #include "paddle/fluid/operators/utils.h"
 | |
| #include "paddle/fluid/platform/device_context.h"
 | |
| 
 | |
| namespace paddle {
 | |
| namespace operators {
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class UnsqueezeKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &context) const override {
 | |
|     auto axes = context.Attr<std::vector<int>>("axes");
 | |
|     auto *in = context.Input<framework::LoDTensor>("X");
 | |
|     auto *out = context.Output<framework::LoDTensor>("Out");
 | |
|     auto x_dims = in->dims();
 | |
| 
 | |
|     bool need_resize_out_dims = false;
 | |
|     if (axes.empty()) {
 | |
|       auto axes_tensor_list =
 | |
|           context.MultiInput<framework::Tensor>("AxesTensorList");
 | |
|       if (axes_tensor_list.size() > 0) {
 | |
|         axes = GetDataFromTensorList<int>(axes_tensor_list);
 | |
|       } else if (context.HasInput("AxesTensor")) {
 | |
|         auto *axes_tensor = context.Input<framework::Tensor>("AxesTensor");
 | |
|         axes = GetDataFromTensor<int>(axes_tensor);
 | |
|       }
 | |
|       need_resize_out_dims = true;
 | |
|     }
 | |
|     framework::DDim out_dims = out->dims();
 | |
|     if (need_resize_out_dims) {
 | |
|       out_dims = GetOutputShape(axes, x_dims);
 | |
|       out->Resize(out_dims);
 | |
|     }
 | |
|     out->mutable_data(context.GetPlace(), in->type());
 | |
|     framework::TensorCopy(
 | |
|         *in, context.GetPlace(),
 | |
|         context.template device_context<platform::DeviceContext>(), out);
 | |
|     out->Resize(out_dims);
 | |
|   }
 | |
| 
 | |
|   static framework::DDim GetOutputShape(const std::vector<int> unsqz_dims,
 | |
|                                         const framework::DDim &in_dims) {
 | |
|     int output_size = in_dims.size() + static_cast<int>(unsqz_dims.size());
 | |
|     int cur_output_size = in_dims.size();
 | |
|     std::vector<int64_t> output_shape(output_size, 0);
 | |
| 
 | |
|     // Validity Check: rank range.
 | |
|     PADDLE_ENFORCE_LE(output_size, 6,
 | |
|                       platform::errors::InvalidArgument(
 | |
|                           "The output "
 | |
|                           "tensor's rank should be less than 6."));
 | |
| 
 | |
|     for (int axis : unsqz_dims) {
 | |
|       int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
 | |
|       // Vaildity Check: the axis bound
 | |
|       PADDLE_ENFORCE_GE(cur, 0, platform::errors::InvalidArgument(
 | |
|                                     "The insert dimension value should "
 | |
|                                     "not be less than 0"));
 | |
|       PADDLE_ENFORCE_LE(cur, cur_output_size,
 | |
|                         platform::errors::InvalidArgument(
 | |
|                             "The insert dimension value shoule not be larger "
 | |
|                             "than the dimension size of input tensor"));
 | |
|       // Move old axis, and insert new axis
 | |
|       for (int i = cur_output_size; i >= cur; --i) {
 | |
|         if (output_shape[i] == 1) {
 | |
|           // Move axis
 | |
|           output_shape[i + 1] = 1;
 | |
|           output_shape[i] = 0;
 | |
|         }
 | |
|       }
 | |
|       output_shape[cur] = 1;
 | |
|       // Add the output size.
 | |
|       cur_output_size++;
 | |
|     }
 | |
| 
 | |
|     // Make output shape
 | |
|     for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
 | |
|       if (output_shape[out_idx] == 0) {
 | |
|         output_shape[out_idx] = in_dims[in_idx++];
 | |
|       }
 | |
|     }
 | |
| 
 | |
|     return framework::make_ddim(output_shape);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class UnsqueezeGradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &ctx) const override {
 | |
|     auto *d_out =
 | |
|         ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
 | |
|     auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
 | |
|     auto in_dims = ctx.Input<framework::LoDTensor>("X")->dims();
 | |
| 
 | |
|     d_x->mutable_data(ctx.GetPlace(), d_out->type());
 | |
|     framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
 | |
|     d_x->Resize(in_dims);
 | |
|   }
 | |
| };
 | |
| 
 | |
| template <typename DeviceContext, typename T>
 | |
| class Unsqueeze2GradKernel : public framework::OpKernel<T> {
 | |
|  public:
 | |
|   void Compute(const framework::ExecutionContext &ctx) const override {
 | |
|     auto *d_out =
 | |
|         ctx.Input<framework::LoDTensor>(framework::GradVarName("Out"));
 | |
|     auto *d_x = ctx.Output<framework::LoDTensor>(framework::GradVarName("X"));
 | |
|     // auto in_dims = d_x->dims();
 | |
| 
 | |
|     auto xshape_dims = ctx.Input<framework::LoDTensor>("XShape")->dims();
 | |
|     auto x_dims = framework::slice_ddim(xshape_dims, 1, xshape_dims.size());
 | |
| 
 | |
|     d_x->mutable_data(ctx.GetPlace(), d_out->type());
 | |
|     framework::TensorCopySync(*d_out, ctx.GetPlace(), d_x);
 | |
|     d_x->Resize(x_dims);
 | |
|   }
 | |
| };
 | |
| }  // namespace operators
 | |
| }  // namespace paddle
 |