You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
166 lines
5.1 KiB
166 lines
5.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import random
|
|
import numpy as np
|
|
|
|
from op_test import OpTest
|
|
|
|
|
|
class CRFDecoding(object):
|
|
def __init__(self, emission_weights, transition_weights,
|
|
seq_start_positions):
|
|
assert (emission_weights.shape[0] == sum(seq_start_positions))
|
|
self.tag_num = emission_weights.shape[1]
|
|
self.seq_num = len(seq_start_positions)
|
|
|
|
self.seq_start_positions = seq_start_positions
|
|
self.x = emission_weights
|
|
|
|
self.a = transition_weights[0, :]
|
|
self.b = transition_weights[1, :]
|
|
self.w = transition_weights[2:, :]
|
|
|
|
self.track = np.zeros(
|
|
(sum(seq_start_positions), self.tag_num), dtype="int64")
|
|
self.decoded_path = np.zeros(
|
|
(sum(seq_start_positions), 1), dtype="int64")
|
|
|
|
def _decode_one_sequence(self, decoded_path, x):
|
|
seq_len, tag_num = x.shape
|
|
alpha = np.zeros((seq_len, tag_num), dtype="float64")
|
|
track = np.zeros((seq_len, tag_num), dtype="int64")
|
|
|
|
for i in range(tag_num):
|
|
alpha[0, i] = self.a[i] + x[0, i]
|
|
|
|
for k in range(1, seq_len):
|
|
for i in range(tag_num):
|
|
max_score = -np.finfo("float64").max
|
|
max_idx = 0
|
|
for j in range(tag_num):
|
|
score = alpha[k - 1, j] + self.w[j, i]
|
|
if score > max_score:
|
|
max_score = score
|
|
max_idx = j
|
|
alpha[k, i] = max_score + x[k, i]
|
|
track[k, i] = max_idx
|
|
|
|
max_score = -np.finfo("float64").max
|
|
max_idx = 0
|
|
for i in range(tag_num):
|
|
score = alpha[seq_len - 1, i] + self.b[i]
|
|
if score > max_score:
|
|
max_score = score
|
|
max_idx = i
|
|
|
|
decoded_path[-1] = max_idx
|
|
for i in range(seq_len - 1, 0, -1):
|
|
decoded_path[i - 1] = max_idx = track[i, max_idx]
|
|
|
|
def decode(self):
|
|
cur_pos = 0
|
|
for i in range(self.seq_num):
|
|
start = cur_pos
|
|
cur_pos += self.seq_start_positions[i]
|
|
end = cur_pos
|
|
self._decode_one_sequence(self.decoded_path[start:end, :],
|
|
self.x[start:end, :])
|
|
return self.decoded_path
|
|
|
|
|
|
class TestCRFDecodingOp1(OpTest):
|
|
"""
|
|
Compare the dynamic program with random generated parameters and inputs
|
|
with grouth truth not being given.
|
|
"""
|
|
|
|
def set_test_data(self):
|
|
SEQ_NUM = 3
|
|
TAG_NUM = 17
|
|
MAX_SEQ_LEN = 10
|
|
|
|
lod = [[]]
|
|
total_len = 0
|
|
for i in range(SEQ_NUM):
|
|
lod[-1].append(random.randint(1, MAX_SEQ_LEN))
|
|
total_len += lod[-1][-1]
|
|
emission = np.random.uniform(-1, 1,
|
|
[total_len, TAG_NUM]).astype("float64")
|
|
transition = np.random.uniform(-0.5, 0.5,
|
|
[TAG_NUM + 2, TAG_NUM]).astype("float64")
|
|
|
|
self.inputs = {
|
|
"Emission": (emission, lod),
|
|
"Transition": transition,
|
|
}
|
|
|
|
decoder = CRFDecoding(emission, transition, lod[0])
|
|
decoded_path = decoder.decode()
|
|
|
|
self.outputs = {"ViterbiPath": decoded_path}
|
|
|
|
def setUp(self):
|
|
self.op_type = "crf_decoding"
|
|
self.set_test_data()
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestCRFDecodingOp2(OpTest):
|
|
"""
|
|
Compare the dynamic program with brute force computation with
|
|
ground truth being given.
|
|
"""
|
|
|
|
def setUp(self):
|
|
self.op_type = "crf_decoding"
|
|
TAG_NUM = 5
|
|
|
|
lod = [[1, 2, 3, 4]]
|
|
total_len = sum(lod[-1])
|
|
transition = np.repeat(
|
|
np.arange(
|
|
TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
|
|
TAG_NUM + 2,
|
|
axis=0)
|
|
emission = np.repeat(
|
|
np.arange(
|
|
TAG_NUM, dtype="float64").reshape(1, TAG_NUM),
|
|
total_len,
|
|
axis=0)
|
|
|
|
labels = np.random.randint(
|
|
low=0, high=TAG_NUM, size=(total_len, 1), dtype="int64")
|
|
predicted_labels = np.ones(
|
|
(total_len, 1), dtype="int64") * (TAG_NUM - 1)
|
|
expected_output = (labels == predicted_labels).astype("int64")
|
|
|
|
self.inputs = {
|
|
"Emission": (emission, lod),
|
|
"Transition": transition,
|
|
"Label": (labels, lod)
|
|
}
|
|
|
|
self.outputs = {"ViterbiPath": expected_output}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|