You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_matmul_op.py

173 lines
5.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
BATCH_SIZE = 2
M = 3
N = 4
K = 5
if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
K = 1
if dim_X == 1:
if transpose_X:
shape_X = [M]
else:
shape_X = [K]
if dim_Y == 1:
if transpose_Y:
shape_Y = [N]
else:
shape_Y = [K]
if dim_X >= 2:
if transpose_X:
shape_X = [K, M]
else:
shape_X = [M, K]
if dim_X == 3:
shape_X = [BATCH_SIZE] + shape_X
if dim_Y >= 2:
if transpose_Y:
shape_Y = [N, K]
else:
shape_Y = [K, N]
if dim_Y == 3:
shape_Y = [BATCH_SIZE] + shape_Y
return shape_X, shape_Y
def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
"""Reference forward implementation using np.matmul."""
# np.matmul does not support the transpose flags, so we manually
# transpose X and Y appropriately.
if transpose_X:
if X.ndim == 1:
X = X.reshape((X.size, 1))
elif X.ndim == 2:
X = X.T
else:
dim = [i for i in range(len(X.shape))]
dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
X = np.transpose(X, tuple(dim))
if transpose_Y:
if Y.ndim == 1:
Y = Y.reshape((1, Y.size))
else:
dim = [i for i in range(len(Y.shape))]
dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
Y = np.transpose(Y, tuple(dim))
Out = np.matmul(X, Y)
if not Out.shape:
# We do not support 0-dimensional Tensors (scalars). So where
# np.matmul outputs a scalar, we must convert to a Tensor of
# shape (1, ) instead.
# Everywhere else, we are compatible with np.matmul.
Out = np.array([Out], dtype="float32")
return Out
class Generator(object):
def setUp(self):
self.op_type = "matmul"
X = np.random.random(self.shape_X).astype("float32")
Y = np.random.random(self.shape_Y).astype("float32")
Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
self.inputs = {'X': X, 'Y': Y}
self.attrs = {
'transpose_X': self.transpose_X,
'transpose_Y': self.transpose_Y
}
self.outputs = {'Out': Out}
def test_check_output(self):
self.check_output(atol=1e-3)
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
def test_check_grad_ignore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
def test_check_grad_ignore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
# Generate test cases for all possibilities
def inject_test(dim_x, dim_y, trans_x, trans_y):
test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
dim_x, dim_y, trans_x, trans_y))
shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
trans_y)
globals()[test_name] = type(test_name, (Generator, OpTest), {
'shape_X': shape_x,
'shape_Y': shape_y,
'transpose_X': trans_x,
'transpose_Y': trans_y,
})
for dim_X in (1, 2, 3):
for dim_Y in (1, 2, 3):
for transose_x in (False, True):
for transose_y in (False, True):
inject_test(dim_X, dim_Y, transose_x, transose_y)
# Test case n-dim
def generate_compatible_shapes(dim, transpose_X, transpose_Y):
M = 2
N = 4
K = 3
shape_X = [2 for _ in range(dim - 2)]
shape_Y = [2 for _ in range(dim - 2)]
if transpose_X:
shape_X += [K, M]
else:
shape_X += [M, K]
if transpose_Y:
shape_Y += [N, K]
else:
shape_Y += [K, N]
return shape_X, shape_Y
# # Test case n-dim
for dim in [4]:
for transpose_X in [False, True]:
for transpose_Y in [False, True]:
test_name = (
'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
dim, dim, transpose_X, transpose_Y))
shape_X, shape_Y = generate_compatible_shapes(dim, transpose_X,
transpose_Y)
globals()[test_name] = type(test_name, (Generator, OpTest), {
'shape_X': shape_X,
'shape_Y': shape_Y,
'transpose_X': transpose_X,
'transpose_Y': transpose_Y,
})
if __name__ == "__main__":
unittest.main()