You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
5.3 KiB
173 lines
5.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
|
|
|
|
def generate_compatible_shapes(dim_X, dim_Y, transpose_X, transpose_Y):
|
|
BATCH_SIZE = 2
|
|
M = 3
|
|
N = 4
|
|
K = 5
|
|
if (dim_X == 1 and transpose_X) or (dim_Y == 1 and transpose_Y):
|
|
K = 1
|
|
if dim_X == 1:
|
|
if transpose_X:
|
|
shape_X = [M]
|
|
else:
|
|
shape_X = [K]
|
|
if dim_Y == 1:
|
|
if transpose_Y:
|
|
shape_Y = [N]
|
|
else:
|
|
shape_Y = [K]
|
|
if dim_X >= 2:
|
|
if transpose_X:
|
|
shape_X = [K, M]
|
|
else:
|
|
shape_X = [M, K]
|
|
if dim_X == 3:
|
|
shape_X = [BATCH_SIZE] + shape_X
|
|
if dim_Y >= 2:
|
|
if transpose_Y:
|
|
shape_Y = [N, K]
|
|
else:
|
|
shape_Y = [K, N]
|
|
if dim_Y == 3:
|
|
shape_Y = [BATCH_SIZE] + shape_Y
|
|
return shape_X, shape_Y
|
|
|
|
|
|
def reference_matmul(X, Y, transpose_X=False, transpose_Y=False):
|
|
"""Reference forward implementation using np.matmul."""
|
|
# np.matmul does not support the transpose flags, so we manually
|
|
# transpose X and Y appropriately.
|
|
if transpose_X:
|
|
if X.ndim == 1:
|
|
X = X.reshape((X.size, 1))
|
|
elif X.ndim == 2:
|
|
X = X.T
|
|
else:
|
|
dim = [i for i in range(len(X.shape))]
|
|
dim[-1], dim[len(X.shape) - 2] = dim[len(X.shape) - 2], dim[-1]
|
|
X = np.transpose(X, tuple(dim))
|
|
if transpose_Y:
|
|
if Y.ndim == 1:
|
|
Y = Y.reshape((1, Y.size))
|
|
else:
|
|
dim = [i for i in range(len(Y.shape))]
|
|
dim[-1], dim[len(Y.shape) - 2] = dim[len(Y.shape) - 2], dim[-1]
|
|
Y = np.transpose(Y, tuple(dim))
|
|
|
|
Out = np.matmul(X, Y)
|
|
if not Out.shape:
|
|
# We do not support 0-dimensional Tensors (scalars). So where
|
|
# np.matmul outputs a scalar, we must convert to a Tensor of
|
|
# shape (1, ) instead.
|
|
# Everywhere else, we are compatible with np.matmul.
|
|
Out = np.array([Out], dtype="float32")
|
|
return Out
|
|
|
|
|
|
class Generator(object):
|
|
def setUp(self):
|
|
self.op_type = "matmul"
|
|
X = np.random.random(self.shape_X).astype("float32")
|
|
Y = np.random.random(self.shape_Y).astype("float32")
|
|
Out = reference_matmul(X, Y, self.transpose_X, self.transpose_Y)
|
|
self.inputs = {'X': X, 'Y': Y}
|
|
self.attrs = {
|
|
'transpose_X': self.transpose_X,
|
|
'transpose_Y': self.transpose_Y
|
|
}
|
|
self.outputs = {'Out': Out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output(atol=1e-3)
|
|
|
|
def test_check_grad_normal(self):
|
|
self.check_grad(['X', 'Y'], 'Out', max_relative_error=1e-3)
|
|
|
|
def test_check_grad_ignore_x(self):
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=1e-3, no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ignore_y(self):
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=1e-3, no_grad_set=set('Y'))
|
|
|
|
|
|
# Generate test cases for all possibilities
|
|
def inject_test(dim_x, dim_y, trans_x, trans_y):
|
|
test_name = ('TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
|
|
dim_x, dim_y, trans_x, trans_y))
|
|
shape_x, shape_y = generate_compatible_shapes(dim_x, dim_y, trans_x,
|
|
trans_y)
|
|
globals()[test_name] = type(test_name, (Generator, OpTest), {
|
|
'shape_X': shape_x,
|
|
'shape_Y': shape_y,
|
|
'transpose_X': trans_x,
|
|
'transpose_Y': trans_y,
|
|
})
|
|
|
|
|
|
for dim_X in (1, 2, 3):
|
|
for dim_Y in (1, 2, 3):
|
|
for transose_x in (False, True):
|
|
for transose_y in (False, True):
|
|
inject_test(dim_X, dim_Y, transose_x, transose_y)
|
|
|
|
|
|
# Test case n-dim
|
|
def generate_compatible_shapes(dim, transpose_X, transpose_Y):
|
|
M = 2
|
|
N = 4
|
|
K = 3
|
|
shape_X = [2 for _ in range(dim - 2)]
|
|
shape_Y = [2 for _ in range(dim - 2)]
|
|
|
|
if transpose_X:
|
|
shape_X += [K, M]
|
|
else:
|
|
shape_X += [M, K]
|
|
|
|
if transpose_Y:
|
|
shape_Y += [N, K]
|
|
else:
|
|
shape_Y += [K, N]
|
|
|
|
return shape_X, shape_Y
|
|
|
|
|
|
# # Test case n-dim
|
|
for dim in [4]:
|
|
for transpose_X in [False, True]:
|
|
for transpose_Y in [False, True]:
|
|
test_name = (
|
|
'TestMatMulOp_dimX_{}_dim_Y_{}_transX_{}_transY_{}'.format(
|
|
dim, dim, transpose_X, transpose_Y))
|
|
shape_X, shape_Y = generate_compatible_shapes(dim, transpose_X,
|
|
transpose_Y)
|
|
globals()[test_name] = type(test_name, (Generator, OpTest), {
|
|
'shape_X': shape_X,
|
|
'shape_Y': shape_Y,
|
|
'transpose_X': transpose_X,
|
|
'transpose_Y': transpose_Y,
|
|
})
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|