You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_multi_pass_reader.py

67 lines
2.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import paddle.fluid as fluid
import paddle
import paddle.dataset.mnist as mnist
class TestMultipleReader(unittest.TestCase):
def setUp(self):
self.batch_size = 64
self.pass_num = 3
# Convert mnist to recordio file
with fluid.program_guard(fluid.Program(), fluid.Program()):
data_file = paddle.batch(mnist.train(), batch_size=self.batch_size)
feeder = fluid.DataFeeder(
feed_list=[
fluid.layers.data(
name='image', shape=[784]),
fluid.layers.data(
name='label', shape=[1], dtype='int64'),
],
place=fluid.CPUPlace())
self.num_batch = fluid.recordio_writer.convert_reader_to_recordio_file(
'./mnist.recordio', data_file, feeder)
def test_main(self):
with fluid.program_guard(fluid.Program(), fluid.Program()):
data_file = fluid.layers.open_recordio_file(
filename='./mnist.recordio',
shapes=[(-1, 784), (-1, 1)],
lod_levels=[0, 0],
dtypes=['float32', 'int64'],
pass_num=self.pass_num)
img, label = fluid.layers.read_file(data_file)
if fluid.core.is_compiled_with_cuda():
place = fluid.CUDAPlace(0)
else:
place = fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
batch_count = 0
while True:
try:
img_val, = exe.run(fetch_list=[img])
except fluid.core.EOFException:
break
batch_count += 1
self.assertLessEqual(img_val.shape[0], self.batch_size)
self.assertEqual(batch_count, self.num_batch * self.pass_num)