You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
220 lines
8.2 KiB
220 lines
8.2 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from paddle import fluid, nn
|
|
import paddle.fluid.dygraph as dg
|
|
import paddle.nn.functional as F
|
|
import paddle.fluid.initializer as I
|
|
import numpy as np
|
|
import unittest
|
|
|
|
|
|
class HSigmoidTestCase(unittest.TestCase):
|
|
def __init__(self,
|
|
methodName="runTest",
|
|
batch_size=4,
|
|
feature_size=6,
|
|
num_classes=8,
|
|
labels=None,
|
|
path_code=None,
|
|
path_table=None,
|
|
is_sparse=False,
|
|
dtype="float32"):
|
|
super(HSigmoidTestCase, self).__init__()
|
|
self.batch_size = batch_size
|
|
self.feature_size = feature_size
|
|
self.num_classes = num_classes
|
|
self.dtype = dtype
|
|
self.is_sparse = is_sparse
|
|
|
|
self.labels = labels
|
|
self.path_code = path_code
|
|
self.path_table = path_table
|
|
self.is_custom = path_code is not None and path_table is not None
|
|
|
|
def setUp(self):
|
|
input_shape = (self.batch_size, self.feature_size)
|
|
self.input = np.random.uniform(
|
|
-1, 1, size=input_shape).astype(self.dtype)
|
|
if self.labels is None:
|
|
self.labels = np.random.randint(
|
|
0, self.num_classes, size=(self.batch_size, 1)).astype(np.int64)
|
|
C = self.num_classes if self.is_custom else self.num_classes - 1
|
|
self.weight_shape = (C, self.feature_size)
|
|
self.weight = np.random.randn(*self.weight_shape).astype(self.dtype)
|
|
self.bias_shape = (C, 1)
|
|
self.bias = np.random.randn(*self.bias_shape).astype(self.dtype)
|
|
|
|
def fluid_layer(self, place):
|
|
main = fluid.Program()
|
|
start = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, start):
|
|
x = fluid.data(
|
|
"input", [-1, self.feature_size], dtype=self.dtype)
|
|
label = fluid.data("labels", [-1, 1], dtype="int64")
|
|
if self.is_custom:
|
|
path_table = fluid.data(
|
|
"path_table", [-1, -1], dtype="int64")
|
|
path_code = fluid.data("path_code", [-1, -1], dtype="int64")
|
|
else:
|
|
path_table = path_code = None
|
|
y = fluid.layers.hsigmoid(
|
|
x,
|
|
label,
|
|
self.num_classes,
|
|
param_attr=I.NumpyArrayInitializer(self.weight),
|
|
bias_attr=I.NumpyArrayInitializer(self.bias),
|
|
path_table=path_table,
|
|
path_code=path_code,
|
|
is_custom=self.is_custom,
|
|
is_sparse=self.is_sparse, )
|
|
exe = fluid.Executor(place)
|
|
exe.run(start)
|
|
feed_dict = {"input": self.input, "labels": self.labels}
|
|
if self.is_custom:
|
|
feed_dict["path_code"] = self.path_code
|
|
feed_dict["path_table"] = self.path_table
|
|
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
|
|
return y_np
|
|
|
|
def functional(self, place):
|
|
main = fluid.Program()
|
|
start = fluid.Program()
|
|
with fluid.unique_name.guard():
|
|
with fluid.program_guard(main, start):
|
|
x = fluid.data(
|
|
"input", [-1, self.feature_size], dtype=self.dtype)
|
|
label = fluid.data("labels", [-1, 1], dtype="int64")
|
|
if self.is_custom:
|
|
path_table = fluid.data(
|
|
"path_table", [-1, -1], dtype="int64")
|
|
path_code = fluid.data("path_code", [-1, -1], dtype="int64")
|
|
else:
|
|
path_table = path_code = None
|
|
w = fluid.data("weight", self.weight_shape, dtype=self.dtype)
|
|
b = fluid.data("bias", self.bias_shape, dtype=self.dtype)
|
|
y = F.hsigmoid(
|
|
x,
|
|
label,
|
|
w,
|
|
b,
|
|
self.num_classes,
|
|
is_sparse=self.is_sparse,
|
|
path_table=path_table,
|
|
path_code=path_code)
|
|
|
|
exe = fluid.Executor(place)
|
|
exe.run(start)
|
|
feed_dict = {
|
|
"input": self.input,
|
|
"labels": self.labels,
|
|
"weight": self.weight,
|
|
"bias": self.bias
|
|
}
|
|
if self.is_custom:
|
|
feed_dict["path_code"] = self.path_code
|
|
feed_dict["path_table"] = self.path_table
|
|
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y])
|
|
return y_np
|
|
|
|
def nn_layer(self, place):
|
|
with dg.guard(place):
|
|
x_var = dg.to_variable(self.input)
|
|
label_var = dg.to_variable(self.labels)
|
|
if self.is_custom:
|
|
path_code_var = dg.to_variable(self.path_code)
|
|
path_table_var = dg.to_variable(self.path_table)
|
|
else:
|
|
path_code_var = path_table_var = None
|
|
hierarchical_softmax = nn.HSigmoid(
|
|
self.feature_size,
|
|
self.num_classes,
|
|
is_custom=self.is_custom,
|
|
is_sparse=self.is_sparse,
|
|
param_attr=I.NumpyArrayInitializer(self.weight),
|
|
bias_attr=I.NumpyArrayInitializer(self.bias),
|
|
dtype=self.dtype)
|
|
y_var = hierarchical_softmax(
|
|
x_var,
|
|
label_var,
|
|
path_table=path_table_var,
|
|
path_code=path_code_var)
|
|
y_np = y_var.numpy()
|
|
return y_np
|
|
|
|
def _test_equivalence(self, place):
|
|
result1 = self.fluid_layer(place)
|
|
result2 = self.functional(place)
|
|
result3 = self.nn_layer(place)
|
|
np.testing.assert_array_almost_equal(result1, result2)
|
|
np.testing.assert_array_almost_equal(result2, result3)
|
|
|
|
def runTest(self):
|
|
place = fluid.CPUPlace()
|
|
self._test_equivalence(place)
|
|
|
|
|
|
class HSigmoidTestErrorCase(HSigmoidTestCase):
|
|
def runTest(self):
|
|
place = fluid.CPUPlace()
|
|
with dg.guard(place):
|
|
with self.assertRaises(ValueError):
|
|
self.nn_layer()
|
|
|
|
def nn_layer(self):
|
|
x_var = dg.to_variable(self.input)
|
|
label_var = dg.to_variable(self.labels)
|
|
if self.is_custom:
|
|
path_code_var = dg.to_variable(self.path_code)
|
|
path_table_var = dg.to_variable(self.path_table)
|
|
else:
|
|
path_code_var = path_table_var = None
|
|
hierarchical_softmax = nn.HSigmoid(
|
|
self.feature_size,
|
|
self.num_classes,
|
|
is_custom=self.is_custom,
|
|
param_attr=I.NumpyArrayInitializer(self.weight),
|
|
bias_attr=I.NumpyArrayInitializer(self.bias),
|
|
dtype=self.dtype)
|
|
y_var = hierarchical_softmax(
|
|
x_var,
|
|
label_var,
|
|
path_table=path_table_var,
|
|
path_code=path_code_var)
|
|
y_np = y_var.numpy()
|
|
return y_np
|
|
|
|
|
|
def load_tests(loader, standard_tests, pattern):
|
|
suite = unittest.TestSuite()
|
|
suite.addTest(HSigmoidTestCase(methodName="runTest"))
|
|
suite.addTest(
|
|
HSigmoidTestCase(
|
|
methodName="runTest",
|
|
batch_size=4,
|
|
feature_size=6,
|
|
num_classes=8,
|
|
labels=np.array([0, 1, 4, 5]).astype(np.int64),
|
|
path_table=np.array([(0, 2, -1, -1, -1), (0, 1, 3, -1, -1), (
|
|
0, 1, 4, -1, -1), (0, 2, -1, -1, -1)]).astype(np.int64),
|
|
path_code=np.array([(0, 0, -1, -1, -1), (1, 1, 1, -1, -1), (
|
|
1, 0, 0, -1, -1), (0, 1, -1, -1, -1)]).astype(np.int64)))
|
|
suite.addTest(HSigmoidTestErrorCase(methodName="runTest", num_classes=1))
|
|
return suite
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|