You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
212 lines
6.4 KiB
212 lines
6.4 KiB
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
you may not use this file except in compliance with the License.
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
See the License for the specific language governing permissions and
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/framework/device_worker.h"
|
|
|
|
namespace paddle {
|
|
namespace framework {
|
|
|
|
class LoDTensor;
|
|
class Scope;
|
|
|
|
void DeviceWorker::SetRootScope(Scope* root_scope) { root_scope_ = root_scope; }
|
|
|
|
void DeviceWorker::SetDataFeed(DataFeed* data_feed) {
|
|
device_reader_ = data_feed;
|
|
}
|
|
|
|
template <typename T>
|
|
std::string PrintLodTensorType(Tensor* tensor, int64_t start, int64_t end) {
|
|
auto count = tensor->numel();
|
|
if (start < 0 || end > count) {
|
|
VLOG(3) << "access violation";
|
|
return "access violation";
|
|
}
|
|
std::ostringstream os;
|
|
for (int64_t i = start; i < end; i++) {
|
|
os << ":" << tensor->data<T>()[i];
|
|
}
|
|
return os.str();
|
|
}
|
|
|
|
std::string PrintLodTensorIntType(Tensor* tensor, int64_t start, int64_t end) {
|
|
auto count = tensor->numel();
|
|
if (start < 0 || end > count) {
|
|
VLOG(3) << "access violation";
|
|
return "access violation";
|
|
}
|
|
std::ostringstream os;
|
|
for (int64_t i = start; i < end; i++) {
|
|
os << ":" << static_cast<uint64_t>(tensor->data<int64_t>()[i]);
|
|
}
|
|
return os.str();
|
|
}
|
|
|
|
std::string PrintLodTensor(Tensor* tensor, int64_t start, int64_t end) {
|
|
std::string out_val;
|
|
if (tensor->type() == proto::VarType::FP32) {
|
|
out_val = PrintLodTensorType<float>(tensor, start, end);
|
|
} else if (tensor->type() == proto::VarType::INT64) {
|
|
out_val = PrintLodTensorIntType(tensor, start, end);
|
|
} else if (tensor->type() == proto::VarType::FP64) {
|
|
out_val = PrintLodTensorType<double>(tensor, start, end);
|
|
} else {
|
|
out_val = "unsupported type";
|
|
}
|
|
return out_val;
|
|
}
|
|
|
|
std::pair<int64_t, int64_t> GetTensorBound(LoDTensor* tensor, int index) {
|
|
auto& dims = tensor->dims();
|
|
if (tensor->lod().size() != 0) {
|
|
auto& lod = tensor->lod()[0];
|
|
return {lod[index] * dims[1], lod[index + 1] * dims[1]};
|
|
} else {
|
|
return {index * dims[1], (index + 1) * dims[1]};
|
|
}
|
|
}
|
|
|
|
bool CheckValidOutput(LoDTensor* tensor, size_t batch_size) {
|
|
auto& dims = tensor->dims();
|
|
if (dims.size() != 2) return false;
|
|
if (tensor->lod().size() != 0) {
|
|
auto& lod = tensor->lod()[0];
|
|
if (lod.size() != batch_size + 1) {
|
|
return false;
|
|
}
|
|
} else {
|
|
if (dims[0] != static_cast<int>(batch_size)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void DeviceWorker::DumpParam(const Scope& scope, const int batch_id) {
|
|
std::ostringstream os;
|
|
for (auto& param : *dump_param_) {
|
|
os.str("");
|
|
Variable* var = scope.FindVar(param);
|
|
if (var == nullptr) {
|
|
continue;
|
|
}
|
|
LoDTensor* tensor = var->GetMutable<LoDTensor>();
|
|
framework::LoDTensor cpu_tensor;
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
|
|
tensor = &cpu_tensor;
|
|
}
|
|
int64_t len = tensor->numel();
|
|
os << "(" << batch_id << "," << param << ")"
|
|
<< PrintLodTensor(tensor, 0, len);
|
|
writer_ << os.str();
|
|
}
|
|
}
|
|
|
|
void DeviceWorker::InitRandomDumpConfig(const TrainerDesc& desc) {
|
|
bool enable_random_dump = desc.enable_random_dump();
|
|
if (!enable_random_dump) {
|
|
dump_mode_ = 0;
|
|
} else {
|
|
if (desc.random_with_lineid()) {
|
|
dump_mode_ = 1;
|
|
} else {
|
|
dump_mode_ = 2;
|
|
}
|
|
}
|
|
dump_interval_ = desc.dump_interval();
|
|
}
|
|
|
|
void DeviceWorker::DumpField(const Scope& scope, int dump_mode,
|
|
int dump_interval) { // dump_mode: 0: no random,
|
|
// 1: random with insid hash,
|
|
// 2: random with random
|
|
// number
|
|
size_t batch_size = device_reader_->GetCurBatchSize();
|
|
auto& ins_id_vec = device_reader_->GetInsIdVec();
|
|
auto& ins_content_vec = device_reader_->GetInsContentVec();
|
|
if (ins_id_vec.size() > 0) {
|
|
batch_size = ins_id_vec.size();
|
|
}
|
|
std::vector<std::string> ars(batch_size);
|
|
std::vector<bool> hit(batch_size, false);
|
|
|
|
std::default_random_engine engine(0);
|
|
std::uniform_int_distribution<size_t> dist(0U, INT_MAX);
|
|
for (size_t i = 0; i < batch_size; i++) {
|
|
size_t r = 0;
|
|
if (dump_mode == 1) {
|
|
r = XXH64(ins_id_vec[i].data(), ins_id_vec[i].length(), 0);
|
|
} else if (dump_mode == 2) {
|
|
r = dist(engine);
|
|
}
|
|
if (r % dump_interval != 0) {
|
|
continue;
|
|
}
|
|
hit[i] = true;
|
|
}
|
|
for (size_t i = 0; i < ins_id_vec.size(); i++) {
|
|
if (!hit[i]) {
|
|
continue;
|
|
}
|
|
ars[i] += ins_id_vec[i];
|
|
ars[i] = ars[i] + "\t" + ins_content_vec[i];
|
|
}
|
|
for (auto& field : *dump_fields_) {
|
|
Variable* var = scope.FindVar(field);
|
|
if (var == nullptr) {
|
|
VLOG(0) << "Note: field[" << field
|
|
<< "] cannot be find in scope, so it was skipped.";
|
|
continue;
|
|
}
|
|
LoDTensor* tensor = var->GetMutable<LoDTensor>();
|
|
if (!tensor->IsInitialized()) {
|
|
VLOG(0) << "Note: field[" << field
|
|
<< "] is not initialized, so it was skipped.";
|
|
continue;
|
|
}
|
|
framework::LoDTensor cpu_tensor;
|
|
if (platform::is_gpu_place(tensor->place())) {
|
|
TensorCopySync(*tensor, platform::CPUPlace(), &cpu_tensor);
|
|
cpu_tensor.set_lod(tensor->lod());
|
|
tensor = &cpu_tensor;
|
|
}
|
|
if (!CheckValidOutput(tensor, batch_size)) {
|
|
VLOG(0) << "Note: field[" << field << "] cannot pass check, so it was "
|
|
"skipped. Maybe the dimension is "
|
|
"wrong ";
|
|
continue;
|
|
}
|
|
for (size_t i = 0; i < batch_size; ++i) {
|
|
if (!hit[i]) {
|
|
continue;
|
|
}
|
|
auto bound = GetTensorBound(tensor, i);
|
|
ars[i] = ars[i] + "\t" + field + ":" +
|
|
std::to_string(bound.second - bound.first);
|
|
ars[i] += PrintLodTensor(tensor, bound.first, bound.second);
|
|
}
|
|
}
|
|
// #pragma omp parallel for
|
|
for (size_t i = 0; i < ars.size(); i++) {
|
|
if (ars[i].length() == 0) {
|
|
continue;
|
|
}
|
|
writer_ << ars[i];
|
|
}
|
|
}
|
|
|
|
} // namespace framework
|
|
} // namespace paddle
|