You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
168 lines
4.7 KiB
168 lines
4.7 KiB
import logging
|
|
import paddle.v2.framework.core as core
|
|
import unittest
|
|
import numpy as np
|
|
from paddle.v2.framework.op import Operator
|
|
|
|
|
|
def py_sigmoid(x):
|
|
return 1. / (1. + np.exp(-x))
|
|
|
|
class PySimpleRNN(object):
|
|
'''
|
|
A simple implementation of RNN based on numpy, to futhur test RecurrentOp's alogorithm
|
|
'''
|
|
def __init__(self,
|
|
input_dim = 30,
|
|
batch_size = 50,
|
|
weight_dim = 15,
|
|
sent_len = 11):
|
|
self.x = np.random.normal(size=(sent_len, batch_size, input_dim))
|
|
self.W = np.random.normal(size=(input_dim, input_dim))
|
|
self.U = np.random.normal(size=(input_dim, input_dim))
|
|
self.h_boot = np.random.normal(size=(batch_size, input_dim))
|
|
|
|
# memories
|
|
self.mems = [np.zeros(shape=(batch_size, input_dim)) for i in range(sent_len)]
|
|
|
|
def forward(self):
|
|
xs = self.segment_inputs()
|
|
for step_id in range(self.x.shape[0]):
|
|
self.step(step_id, xs[step_id])
|
|
return self.concat_outputs()
|
|
|
|
def segment_inputs(self):
|
|
return [self.x[i] for i in range(self.x.shape[0])]
|
|
|
|
def concat_outputs(self):
|
|
return np.array(self.mems)
|
|
|
|
def step(self, step_id, x):
|
|
'''
|
|
run a step
|
|
'''
|
|
mem = self.mems[step_id]
|
|
if step_id > 0:
|
|
pre_mem = self.mems[step_id-1]
|
|
else:
|
|
pre_mem = self.h_boot
|
|
xW = np.matmul(x, self.W)
|
|
hU = np.matmul(mem, self.U)
|
|
|
|
sum = xW + hU
|
|
self.mems[step_id] = py_sigmoid(sum)
|
|
|
|
class PySimpleRNNTest(unittest.TestCase):
|
|
def setUp(self):
|
|
self.rnn = PySimpleRNN()
|
|
|
|
def test_forward(self):
|
|
output = self.rnn.forward()
|
|
print 'output', output
|
|
|
|
|
|
def create_tensor(scope, name, shape, np_data):
|
|
tensor = scope.new_var(name).get_tensor()
|
|
tensor.set_dims(shape)
|
|
tensor.set(np_data, core.CPUPlace())
|
|
return tensor
|
|
|
|
|
|
class TestRecurrentOp(unittest.TestCase):
|
|
'''
|
|
Test RNNOp
|
|
|
|
equation:
|
|
h_t = \sigma (W x_t + U h_{t-1})
|
|
weights:
|
|
- W
|
|
- U
|
|
vars:
|
|
- x
|
|
memories:
|
|
- h
|
|
outputs:
|
|
- h
|
|
'''
|
|
|
|
input_dim = 30
|
|
batch_size = 50
|
|
weight_dim = 15
|
|
sent_len = 11
|
|
|
|
def setUp(self):
|
|
self.py_rnn = PySimpleRNN(self.input_dim,
|
|
self.batch_size,
|
|
self.weight_dim,
|
|
self.sent_len)
|
|
|
|
|
|
def forward(self):
|
|
self.scope = core.Scope()
|
|
self.create_global_variables()
|
|
self.create_step_net()
|
|
rnn_op = self.create_rnn_op()
|
|
ctx = core.DeviceContext.create(core.CPUPlace())
|
|
rnn_op.infer_shape(self.scope)
|
|
rnn_op.run(self.scope, ctx)
|
|
return np.array(self.scope.find_var("h").get_tensor())
|
|
|
|
def create_global_variables(self):
|
|
# create inlink
|
|
x_np_data = self.py_rnn.x
|
|
create_tensor(self.scope, "x",
|
|
[self.sent_len, self.batch_size, self.input_dim], x_np_data)
|
|
W_np_data = self.py_rnn.W
|
|
create_tensor(self.scope, "W", [self.input_dim, self.input_dim], W_np_data)
|
|
|
|
U_np_data = self.py_rnn.U
|
|
create_tensor(self.scope, "U", [self.input_dim, self.input_dim], U_np_data)
|
|
|
|
h_boot_np_data = self.py_rnn.h_boot
|
|
create_tensor(self.scope, "h_boot", [self.batch_size, self.input_dim], h_boot_np_data)
|
|
self.scope.new_var("step_scopes")
|
|
self.scope.new_var("h@alias")
|
|
self.scope.new_var("h")
|
|
|
|
def create_rnn_op(self):
|
|
# create RNNOp
|
|
rnnop = Operator("recurrent_op",
|
|
# inputs
|
|
inlinks=["x"],
|
|
boot_memories=["h_boot"],
|
|
step_net="stepnet",
|
|
# outputs
|
|
outlinks=["h"],
|
|
step_scopes="step_scopes",
|
|
# attributes
|
|
inlink_alias=["x@alias"],
|
|
outlink_alias=["h@alias"],
|
|
pre_memories=["h@pre"],
|
|
memories=["h@alias"])
|
|
return rnnop
|
|
|
|
def create_step_net(self):
|
|
var = self.scope.new_var("stepnet")
|
|
stepnet = var.get_net()
|
|
|
|
x_fc_op = Operator("fc", X="x@alias", W="W", Y="Wx")
|
|
h_fc_op = Operator("fc", X="h@pre", W="U", Y="Uh")
|
|
sum_op = Operator("add_two", X="Wx", Y="Uh", Out="sum")
|
|
sig_op = Operator("sigmoid", X="sum", Y="h@alias")
|
|
|
|
for op in [x_fc_op, h_fc_op, sum_op, sig_op]:
|
|
stepnet.add_op(op)
|
|
stepnet.complete_add_op(True)
|
|
|
|
def test_forward(self):
|
|
print 'test recurrent op forward'
|
|
pd_output = self.forward()
|
|
py_output = self.py_rnn.forward()
|
|
print 'pd_output', pd_output
|
|
print
|
|
print 'py_output', py_output
|
|
self.assertEqual(pd_output.shape, py_output.shape)
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|