You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/dygraph/checkpoint.py

240 lines
8.6 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import collections
from ..framework import Variable, default_main_program
import pickle
from . import learning_rate_scheduler
import warnings
__all__ = ['save_persistables', 'load_persistables']
def save_persistables(model_dict, dirname='save_dir', optimizers=None):
"""
This function filters out all variables in layer.parameters from the give `layer`, and optimizer's learning rate decay.
And then trys to save these variables to the folder `dirname`.
Use the `dirname` to specify the folder where persistable variables were
saved.
Args:
model_dict(dict of Parameters): The parameters will
be saved. If it is None, nothing
will be deal.
dirname(str): The directory path.
optimizers(fluid.Optimizer|list(fluid.Optimizer)|None): The optimizers to be saved
Returns:
None
Examples:
.. code-block:: python
ptb_model = PtbModel(
hidden_size=hidden_size,
vocab_size=vocab_size,
num_layers=num_layers,
num_steps=num_steps,
init_scale=init_scale)
sgd = fluid.optimizer.SGD(learning_rate=0.01)
x_data = np.arange(12).reshape(4, 3).astype('int64')
y_data = np.arange(1, 13).reshape(4, 3).astype('int64')
x_data = x_data.reshape((-1, num_steps, 1))
y_data = y_data.reshape((-1, 1))
init_hidden_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
init_cell_data = np.zeros(
(num_layers, batch_size, hidden_size), dtype='float32')
x = to_variable(x_data)
y = to_variable(y_data)
init_hidden = to_variable(init_hidden_data)
init_cell = to_variable(init_cell_data)
dy_loss, last_hidden, last_cell = ptb_model(x, y, init_hidden,
init_cell)
dy_loss.backward()
sgd.minimize(dy_loss)
ptb_model.clear_gradient()
param_path = "./my_paddle_model"
fluid.dygraph.save_persistables(ptb_model.state_dict(), dirname=param_path, sgd)
"""
if isinstance(model_dict, collections.OrderedDict):
_save_var_to_file(model_dict, optimizers, dirname, None)
def load_persistables(dirname='save_dir'):
"""
This function trys to load persistable variables and optimizer's learning rate decay from the folder `dirname`.
And return the restored values in a dictionary way, respectively.
Use the `dirname` to specify the folder where persistable variables were
saved.
Args:
dirname(str): The directory path. default is save_dir
Returns:
layer_dict: The parameter-dict resumed from file
optimizer: The optimizer
Examples:
.. code-block:: python
my_layer = layer(fluid.Layer)
param_path = "./my_paddle_model"
sgd = SGDOptimizer(learning_rate=1e-3)
param_dict, optimizer_dict = fluid.dygraph.load_persistables(my_layer.parameters(), param_path)
param_1 = param_dict['PtbModel_0.w_1']
sgd.load(optimizer_dict)
"""
return _load_var_from_file(dirname)
def _save_var_to_file(stat_dict, optimizers, file_dir, file_name):
save_block = default_main_program().global_block()
save_var_map = {}
for var_key, each_var in stat_dict.items():
save_var_map[each_var.name] = each_var
if file_name is None:
save_block.append_op(
type='save',
inputs={'X': [each_var]},
outputs={},
attrs={
'file_path': os.path.join(file_dir,
os.path.normpath(each_var.name))
})
if optimizers is not None:
if isinstance(optimizers, (list, tuple)):
optimizers = optimizers
else:
optimizers = [optimizers]
if os.path.exists(
os.path.join(file_dir, os.path.normpath("optimizers"))):
pass
else:
os.mkdir(os.path.join(file_dir, os.path.normpath("optimizers")))
for optimizer in optimizers:
if isinstance(optimizer._learning_rate,
learning_rate_scheduler.LearningRateDecay):
try:
f = open(
os.path.join(file_dir, "optimizers",
os.path.normpath(str(optimizer._name))),
"wb")
pickle.dump(optimizer._learning_rate, f, 2)
f.close()
except ():
raise IOError("Can't load %s",
os.path.join(
file_dir, "optimizers",
os.path.normpath(str(optimizer._name))))
else:
warnings.warn(
"Optimizer not saved, Only optimizer with 'LearningRateDecay' under DyGraph mode need to be saved"
)
else:
pass
if file_name is not None:
save_var_list = []
for name in sorted(save_var_map.keys()):
save_var_list.append(save_var_map[name])
save_block.append_op(
type='save_combine',
inputs={'X': save_var_list},
outputs={},
attrs={
'file_path': os.path.join(file_dir, os.path.normpath(file_name))
})
def _load_var_from_file(file_dir):
if not os.path.exists(file_dir):
raise IOError("{} not exist".format(file_dir))
def walk_filename(file_dir):
base_path = os.path.join(file_dir)
var_name_list = []
if os.path.exists(base_path):
for dirpath, dirnames, filenames in os.walk(base_path):
if "optimizers" in dirpath:
continue
pt = dirpath.replace(base_path, "", 1)
if pt.startswith("/") or pt.startswith("\\"):
pt = pt[1:]
for fth_name in filenames:
if fth_name[0] != '.':
name_path = os.path.join(pt, fth_name)
if "\\" in name_path:
name_path = name_path.replace("\\", "/")
var_name_list.append(name_path)
return var_name_list
load_block = default_main_program().global_block()
load_var_map = {}
load_optimizer_map = {}
file_var_list = walk_filename(file_dir)
for var_name in file_var_list:
new_var = Variable(block=load_block, name=var_name)
load_block.append_op(
type='load',
inputs={},
outputs={'Out': [new_var]},
attrs={
'file_path': os.path.join(file_dir,
os.path.normpath(new_var.name))
})
load_var_map[new_var.name] = new_var
opt_path = os.path.join(file_dir, "optimizers")
for _, _, optimizers in os.walk(opt_path):
for optimizer in optimizers:
try:
f = open(os.path.join(opt_path, optimizer), "rb")
load_optimizer_map[optimizer] = pickle.load(f)
f.close()
except IOError:
raise IOError("Can't load %s",
os.path.join(
file_dir, "optimizers",
os.path.normpath(str(optimizer._name))))
if len(load_optimizer_map) == 0:
print(
"No optimizer loaded. If you didn't save optimizer, please ignore this. The program can still work with new optimizer. "
)
pass
return load_var_map, load_optimizer_map
def _clone_var_in_block_(block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=0,
persistable=True)