You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
121 lines
4.0 KiB
121 lines
4.0 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import argparse
|
|
import time
|
|
import math
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.profiler as profiler
|
|
from paddle.fluid import core
|
|
import unittest
|
|
from multiprocessing import Process
|
|
import os
|
|
import signal
|
|
from functools import reduce
|
|
from test_dist_base import TestDistRunnerBase, runtime_main
|
|
|
|
DTYPE = "float32"
|
|
paddle.dataset.mnist.fetch()
|
|
|
|
# Fix seed for test
|
|
fluid.default_startup_program().random_seed = 1
|
|
fluid.default_main_program().random_seed = 1
|
|
|
|
|
|
def cnn_model(data):
|
|
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
|
input=data,
|
|
filter_size=5,
|
|
num_filters=20,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu",
|
|
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
|
value=0.01)))
|
|
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
|
input=conv_pool_1,
|
|
filter_size=5,
|
|
num_filters=50,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
act="relu",
|
|
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
|
value=0.01)))
|
|
|
|
SIZE = 10
|
|
input_shape = conv_pool_2.shape
|
|
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
|
|
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
|
|
|
predict = fluid.layers.fc(
|
|
input=conv_pool_2,
|
|
size=SIZE,
|
|
act="softmax",
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.Constant(value=0.01)))
|
|
return predict
|
|
|
|
|
|
class TestDistMnist2x2(TestDistRunnerBase):
|
|
def get_model(self, batch_size=2, single_device=False):
|
|
# Input data
|
|
images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
# Train program
|
|
predict = cnn_model(images)
|
|
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
|
avg_cost = fluid.layers.mean(x=cost)
|
|
|
|
# Evaluator
|
|
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
|
batch_acc = fluid.layers.accuracy(
|
|
input=predict, label=label, total=batch_size_tensor)
|
|
|
|
inference_program = fluid.default_main_program().clone()
|
|
|
|
# Reader
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.mnist.test(), batch_size=batch_size)
|
|
test_reader = paddle.batch(
|
|
paddle.dataset.mnist.test(), batch_size=batch_size)
|
|
|
|
# Optimization
|
|
# TODO(typhoonzero): fix distributed adam optimizer
|
|
# opt = fluid.optimizer.AdamOptimizer(
|
|
# learning_rate=0.001, beta1=0.9, beta2=0.999)
|
|
opt = fluid.optimizer.Momentum(learning_rate=self.lr, momentum=0.9)
|
|
if single_device:
|
|
opt.minimize(avg_cost)
|
|
else:
|
|
# multi device or distributed multi device
|
|
params_grads = opt.backward(avg_cost)
|
|
data_parallel_param_grads = []
|
|
for p, g in params_grads:
|
|
# NOTE: scale will be done on loss scale in multi_devices_graph_pass using nranks.
|
|
grad_reduce = fluid.layers.collective._allreduce(g)
|
|
data_parallel_param_grads.append([p, grad_reduce])
|
|
opt.apply_gradients(data_parallel_param_grads)
|
|
|
|
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
|
|
|
|
|
|
if __name__ == "__main__":
|
|
runtime_main(TestDistMnist2x2)
|