You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
173 lines
4.5 KiB
173 lines
4.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import logging
|
|
import paddle
|
|
import tarfile
|
|
|
|
from paddle.fluid.log_helper import get_logger
|
|
|
|
logger = get_logger("paddle", logging.INFO)
|
|
|
|
DATA_URL = "http://paddle-ctr-data.bj.bcebos.com/avazu_ctr_data.tgz"
|
|
DATA_MD5 = "c11df99fbd14e53cd4bfa6567344b26e"
|
|
"""
|
|
avazu_ctr_data/train.txt
|
|
avazu_ctr_data/infer.txt
|
|
avazu_ctr_data/test.txt
|
|
avazu_ctr_data/data.meta.txt
|
|
"""
|
|
|
|
|
|
def read_data(file_name):
|
|
path = paddle.dataset.common.download(DATA_URL, "avazu_ctr_data", DATA_MD5)
|
|
tar = tarfile.open(path, "r:gz")
|
|
tar_info = None
|
|
for member in tar.getmembers():
|
|
if member.name.endswith(file_name):
|
|
tar_info = member
|
|
f = tar.extractfile(tar_info)
|
|
ret_lines = [_.decode('utf-8') for _ in f.readlines()]
|
|
return ret_lines
|
|
|
|
|
|
class TaskMode:
|
|
TRAIN_MODE = 0
|
|
TEST_MODE = 1
|
|
INFER_MODE = 2
|
|
|
|
def __init__(self, mode):
|
|
self.mode = mode
|
|
|
|
def is_train(self):
|
|
return self.mode == self.TRAIN_MODE
|
|
|
|
def is_test(self):
|
|
return self.mode == self.TEST_MODE
|
|
|
|
def is_infer(self):
|
|
return self.mode == self.INFER_MODE
|
|
|
|
@staticmethod
|
|
def create_train():
|
|
return TaskMode(TaskMode.TRAIN_MODE)
|
|
|
|
@staticmethod
|
|
def create_test():
|
|
return TaskMode(TaskMode.TEST_MODE)
|
|
|
|
@staticmethod
|
|
def create_infer():
|
|
return TaskMode(TaskMode.INFER_MODE)
|
|
|
|
|
|
class ModelType:
|
|
CLASSIFICATION = 0
|
|
REGRESSION = 1
|
|
|
|
def __init__(self, mode):
|
|
self.mode = mode
|
|
|
|
def is_classification(self):
|
|
return self.mode == self.CLASSIFICATION
|
|
|
|
def is_regression(self):
|
|
return self.mode == self.REGRESSION
|
|
|
|
@staticmethod
|
|
def create_classification():
|
|
return ModelType(ModelType.CLASSIFICATION)
|
|
|
|
@staticmethod
|
|
def create_regression():
|
|
return ModelType(ModelType.REGRESSION)
|
|
|
|
|
|
def load_dnn_input_record(sent):
|
|
return list(map(int, sent.split()))
|
|
|
|
|
|
def load_lr_input_record(sent):
|
|
res = []
|
|
for _ in [x.split(':') for x in sent.split()]:
|
|
res.append(int(_[0]))
|
|
return res
|
|
|
|
|
|
feeding_index = {'dnn_input': 0, 'lr_input': 1, 'click': 2}
|
|
|
|
|
|
class Dataset(object):
|
|
def train(self):
|
|
'''
|
|
Load trainset.
|
|
'''
|
|
file_name = "train.txt"
|
|
logger.info("load trainset from %s" % file_name)
|
|
mode = TaskMode.create_train()
|
|
return self._parse_creator(file_name, mode)
|
|
|
|
def test(self):
|
|
'''
|
|
Load testset.
|
|
'''
|
|
file_name = "test.txt"
|
|
logger.info("load testset from %s" % file_name)
|
|
mode = TaskMode.create_test()
|
|
return self._parse_creator(file_name, mode)
|
|
|
|
def infer(self):
|
|
'''
|
|
Load infer set.
|
|
'''
|
|
file_name = "infer.txt"
|
|
logger.info("load inferset from %s" % file_name)
|
|
mode = TaskMode.create_infer()
|
|
return self._parse_creator(file_name, mode)
|
|
|
|
def _parse_creator(self, file_name, mode):
|
|
'''
|
|
Parse dataset.
|
|
'''
|
|
|
|
def _parse():
|
|
data = read_data(file_name)
|
|
for line_id, line in enumerate(data):
|
|
fs = line.strip().split('\t')
|
|
dnn_input = load_dnn_input_record(fs[0])
|
|
lr_input = load_lr_input_record(fs[1])
|
|
if not mode.is_infer():
|
|
click = int(fs[2])
|
|
yield [dnn_input, lr_input, click]
|
|
else:
|
|
yield [dnn_input, lr_input]
|
|
|
|
return _parse
|
|
|
|
|
|
def load_data_meta():
|
|
'''
|
|
load data meta info from path, return (dnn_input_dim, lr_input_dim)
|
|
'''
|
|
lines = read_data('data.meta.txt')
|
|
err_info = "wrong meta format"
|
|
assert len(lines) == 2, err_info
|
|
assert 'dnn_input_dim:' in lines[0] and 'lr_input_dim:' in lines[
|
|
1], err_info
|
|
res = map(int, [_.split(':')[1] for _ in lines])
|
|
res = list(res)
|
|
logger.info('dnn input dim: %d' % res[0])
|
|
logger.info('lr input dim: %d' % res[1])
|
|
return res
|