You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_boxps.py

105 lines
3.6 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
import paddle.fluid.layers as layers
import numpy as np
import os
import paddle.fluid.core as core
import unittest
from paddle.fluid.layers.nn import _pull_box_sparse
class TestBoxPSPreload(unittest.TestCase):
""" TestCases for BoxPS Preload """
def test_boxps_cpu(self):
self.run_boxps_preload(True)
def test_boxps_gpu(self):
self.run_boxps_preload(False)
def run_boxps_preload(self, is_cpu=True):
x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0)
y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0)
emb_x, emb_y = _pull_box_sparse([x, y], size=2)
emb_xp = _pull_box_sparse(x, size=2)
layers.Print(emb_xp)
concat = layers.concat([emb_x, emb_y], axis=1)
fc = layers.fc(input=concat,
name="fc",
size=1,
num_flatten_dims=1,
bias_attr=False)
loss = layers.reduce_mean(fc)
layers.Print(loss)
place = fluid.CPUPlace() if is_cpu or not core.is_compiled_with_cuda(
) else fluid.CUDAPlace(0)
exe = fluid.Executor(place)
optimizer = fluid.optimizer.SGD(learning_rate=0.5)
batch_size = 2
def binary_print(slot, fout):
fout.write(str(len(slot)) + " ")
for e in slot:
fout.write(str(e) + " ")
batch1 = np.ones(
(batch_size, 2, 1)).astype("int64").reshape(batch_size, 2, 1)
filelist = []
place_str = "cpu" if is_cpu else "gpu"
for i in range(2):
filelist.append("test_hdfs_" + place_str + "_" + str(i))
for f in filelist:
with open(f, "w") as fout:
for ins in batch1:
for slot in ins:
binary_print(slot, fout)
fout.write("\n")
def create_dataset():
dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset")
dataset.set_use_var([x, y])
dataset.set_batch_size(2)
dataset.set_thread(1)
dataset.set_filelist(filelist)
return dataset
datasets = []
datasets.append(create_dataset())
datasets.append(create_dataset())
optimizer.minimize(loss)
exe.run(fluid.default_startup_program())
datasets[0].load_into_memory()
datasets[0].begin_pass()
datasets[1].preload_into_memory()
exe.train_from_dataset(
program=fluid.default_main_program(),
dataset=datasets[0],
print_period=1)
datasets[0].end_pass()
datasets[1].wait_preload_done()
datasets[1].begin_pass()
exe.train_from_dataset(
program=fluid.default_main_program(),
dataset=datasets[1],
print_period=1)
datasets[1].end_pass()
for f in filelist:
os.remove(f)
if __name__ == '__main__':
unittest.main()