You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
164 lines
6.1 KiB
164 lines
6.1 KiB
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import numpy as np
|
|
import paddle.fluid as fluid
|
|
|
|
from paddle.fluid import FC
|
|
from paddle.fluid.dygraph import FC
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
|
|
import unittest
|
|
|
|
|
|
class Test_Detach(unittest.TestCase):
|
|
def generate_Data(self):
|
|
data = np.array(
|
|
[[1, 8, 3, 9], [7, 20, 9, 6], [4, 6, 8, 10]]).astype('float32')
|
|
return data
|
|
|
|
def no_detach_multi(self):
|
|
data = self.generate_Data()
|
|
with fluid.dygraph.guard():
|
|
fc_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(5.0))
|
|
fc_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(6.0))
|
|
fc = FC("fc",
|
|
10,
|
|
num_flatten_dims=1,
|
|
param_attr=fc_w_param_attrs,
|
|
bias_attr=fc_b_param_attrs)
|
|
fc1_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(7.0))
|
|
fc1_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(8.0))
|
|
fc1 = FC("fc",
|
|
1,
|
|
num_flatten_dims=1,
|
|
param_attr=fc1_w_param_attrs,
|
|
bias_attr=fc1_b_param_attrs)
|
|
fc2_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(9.0))
|
|
fc2_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(10.0))
|
|
fc2 = FC("fc",
|
|
1,
|
|
num_flatten_dims=1,
|
|
param_attr=fc2_w_param_attrs,
|
|
bias_attr=fc2_b_param_attrs)
|
|
data = to_variable(data)
|
|
x = fc(data)
|
|
x1 = fc1(x)
|
|
x2 = fc2(x)
|
|
loss = x1 + x2
|
|
# print(loss, loss.shape)
|
|
loss.backward()
|
|
return x.gradient()
|
|
|
|
def no_detach_single(self):
|
|
data = self.generate_Data()
|
|
with fluid.dygraph.guard():
|
|
fc_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(5.0))
|
|
fc_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(6.0))
|
|
fc = FC("fc",
|
|
10,
|
|
num_flatten_dims=1,
|
|
param_attr=fc_w_param_attrs,
|
|
bias_attr=fc_b_param_attrs)
|
|
fc1_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(7.0))
|
|
fc1_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(8.0))
|
|
fc1 = FC("fc",
|
|
1,
|
|
num_flatten_dims=1,
|
|
param_attr=fc1_w_param_attrs,
|
|
bias_attr=fc1_b_param_attrs)
|
|
data = to_variable(data)
|
|
x = fc(data)
|
|
x1 = fc1(x)
|
|
loss = x1
|
|
# print(loss, loss.shape)
|
|
loss.backward()
|
|
return x.gradient()
|
|
|
|
def detach_multi(self):
|
|
data = self.generate_Data()
|
|
with fluid.dygraph.guard():
|
|
fc_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(5.0))
|
|
fc_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(6.0))
|
|
fc = FC("fc",
|
|
10,
|
|
num_flatten_dims=1,
|
|
param_attr=fc_w_param_attrs,
|
|
bias_attr=fc_b_param_attrs)
|
|
fc1_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(7.0))
|
|
fc1_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(8.0))
|
|
fc1 = FC("fc",
|
|
1,
|
|
num_flatten_dims=1,
|
|
param_attr=fc1_w_param_attrs,
|
|
bias_attr=fc1_b_param_attrs)
|
|
fc2_w_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(9.0))
|
|
fc2_b_param_attrs = fluid.ParamAttr(
|
|
initializer=fluid.initializer.Constant(10.0))
|
|
fc2 = FC("fc",
|
|
1,
|
|
num_flatten_dims=1,
|
|
param_attr=fc2_w_param_attrs,
|
|
bias_attr=fc2_b_param_attrs)
|
|
data = to_variable(data)
|
|
x = fc(data)
|
|
x_detach = x.detach()
|
|
x1 = fc1(x)
|
|
x2 = fc2(x_detach)
|
|
loss = x1 + x2
|
|
# print(loss, loss.shape)
|
|
loss.backward()
|
|
return x.gradient()
|
|
|
|
def test_NoDetachMulti_DetachMulti(self):
|
|
array_no_detach_multi = self.no_detach_multi()
|
|
array_detach_multi = self.detach_multi()
|
|
|
|
assert not np.array_equal(array_no_detach_multi, array_detach_multi)
|
|
|
|
def test_NoDetachSingle_DetachMulti(self):
|
|
array_no_detach_single = self.no_detach_single()
|
|
array_detach_multi = self.detach_multi()
|
|
assert np.array_equal(array_no_detach_single, array_detach_multi)
|
|
|
|
def test_detach_exception(self):
|
|
x = fluid.layers.data(name="a", shape=[3, 4], dtype='float32')
|
|
y = fluid.layers.fc(input=x, size=10, bias_attr=True)
|
|
try:
|
|
y_detach = y.detach()
|
|
except Exception as e:
|
|
assert type(e) == AttributeError
|
|
assert str(e) == 'static graph model DO NOT supprt detach'
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|