You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
311 lines
9.9 KiB
311 lines
9.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
import unittest
|
|
import numpy as np
|
|
import paddle.fluid.core as core
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestElementwiseAddOp(OpTest):
|
|
def init_kernel_type(self):
|
|
self.use_mkldnn = False
|
|
|
|
def setUp(self):
|
|
self.op_type = "elementwise_add"
|
|
self.dtype = np.float32
|
|
self.axis = -1
|
|
self.init_dtype()
|
|
self.init_input_output()
|
|
self.init_kernel_type()
|
|
self.init_axis()
|
|
|
|
self.inputs = {
|
|
'X': OpTest.np_dtype_to_fluid_dtype(self.x),
|
|
'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
|
|
}
|
|
self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
|
|
self.outputs = {'Out': self.out}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad_normal(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.005)
|
|
|
|
def test_check_grad_ingore_x(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(
|
|
['Y'], 'Out', max_relative_error=0.005, no_grad_set=set("X"))
|
|
|
|
def test_check_grad_ingore_y(self):
|
|
if self.dtype == np.float16:
|
|
return
|
|
self.check_grad(
|
|
['X'], 'Out', max_relative_error=0.005, no_grad_set=set('Y'))
|
|
|
|
def init_input_output(self):
|
|
self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
|
|
self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
|
|
self.out = np.add(self.x, self.y)
|
|
|
|
def init_dtype(self):
|
|
pass
|
|
|
|
def init_axis(self):
|
|
pass
|
|
|
|
|
|
class TestFP16ElementwiseAddOp(TestElementwiseAddOp):
|
|
def init_dtype(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
class TestElementwiseAddOp_scalar(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(1).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_scalar(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(1).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestElementwiseAddOp_scalar2(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(1, 1).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_scalar2(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(1, 1).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestElementwiseAddOp_Vector(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.random((32, )).astype(self.dtype)
|
|
self.y = np.random.random((32, )).astype(self.dtype)
|
|
self.out = np.add(self.x, self.y)
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_Vector(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.random((32, )).astype(self.dtype)
|
|
self.y = np.random.random((32, )).astype(self.dtype)
|
|
self.out = np.add(self.x, self.y)
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_0(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(2).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(2, 1, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 0
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_0(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(2).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(2, 1, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 0
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_1(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(3).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 3, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_1(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(3).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 3, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_2(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(4).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 1, 4)
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_2(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(4).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 1, 4)
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_3(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype)
|
|
self.y = np.random.rand(3, 4).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 3, 4, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_3(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype)
|
|
self.y = np.random.rand(3, 4).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 3, 4, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_4(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype)
|
|
self.y = np.random.rand(2, 1).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(2, 1, 1, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 0
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_4(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype)
|
|
self.y = np.random.rand(2, 1).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(2, 1, 1, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 0
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_5(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(2, 1, 4).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_5(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(2, 1, 4).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestElementwiseAddOp_broadcast_6(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype)
|
|
self.y = np.random.rand(2, 3, 1, 5).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_broadcast_6(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4, 5).astype(self.dtype)
|
|
self.y = np.random.rand(2, 3, 1, 5).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
|
|
class TestElementwiseAddOp_rowwise_add_0(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(3, 4).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 3, 4)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_rowwise_add_0(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 3, 4).astype(self.dtype)
|
|
self.y = np.random.rand(3, 4).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 3, 4)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestElementwiseAddOp_rowwise_add_1(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 1).astype(self.dtype)
|
|
self.y = np.random.rand(1).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_rowwise_add_1(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(2, 1).astype(self.dtype)
|
|
self.y = np.random.rand(1).astype(self.dtype)
|
|
self.out = self.x + self.y.reshape(1, 1)
|
|
|
|
def init_axis(self):
|
|
self.axis = 1
|
|
|
|
|
|
class TestElementwiseAddOp_channelwise_add(TestElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(3, 20, 20).astype(self.dtype)
|
|
self.y = np.random.rand(3, 1, 1).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
def init_axis(self):
|
|
self.axis = -1
|
|
|
|
|
|
class TestFP16ElementwiseAddOp_channelwise_add(TestFP16ElementwiseAddOp):
|
|
def init_input_output(self):
|
|
self.x = np.random.rand(3, 10, 20).astype(self.dtype)
|
|
self.y = np.random.rand(3, 1, 1).astype(self.dtype)
|
|
self.out = self.x + self.y
|
|
|
|
def init_axis(self):
|
|
self.axis = -1
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|