You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_ftrl_op.py

79 lines
2.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestFTRLOp(OpTest):
def setUp(self):
self.op_type = "ftrl"
w = np.random.random((102, 105)).astype("float32")
g = np.random.random((102, 105)).astype("float32")
sq_accum = np.full((102, 105), 0.1).astype("float32")
linear_accum = np.full((102, 105), 0.1).astype("float32")
lr = np.array([0.01]).astype("float32")
l1 = 0.1
l2 = 0.2
lr_power = -0.5
self.inputs = {
'Param': w,
'SquaredAccumulator': sq_accum,
'LinearAccumulator': linear_accum,
'Grad': g,
'LearningRate': lr
}
self.attrs = {
'l1': l1,
'l2': l2,
'lr_power': lr_power,
'learning_rate': lr
}
new_accum = sq_accum + g * g
if lr_power == -0.5:
linear_out = linear_accum + g - (
(np.sqrt(new_accum) - np.sqrt(sq_accum)) / lr) * w
else:
linear_out = linear_accum + g - ((np.power(
new_accum, -lr_power) - np.power(sq_accum, -lr_power)) / lr) * w
x = (l1 * np.sign(linear_out) - linear_out)
if lr_power == -0.5:
y = (np.sqrt(new_accum) / lr) + (2 * l2)
pre_shrink = x / y
param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0)
else:
y = (np.power(new_accum, -lr_power) / lr) + (2 * l2)
pre_shrink = x / y
param_out = np.where(np.abs(linear_out) > l1, pre_shrink, 0.0)
sq_accum_out = sq_accum + g * g
self.outputs = {
'ParamOut': param_out,
'SquaredAccumOut': sq_accum_out,
'LinearAccumOut': linear_out
}
def test_check_output(self):
self.check_output()
if __name__ == "__main__":
unittest.main()