You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
195 lines
5.3 KiB
195 lines
5.3 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
from test_lstm_op import lstm, ACTIVATION
|
|
|
|
|
|
def fc(x, w, b):
|
|
return np.dot(x, w) + b
|
|
|
|
|
|
def fusion_lstm(
|
|
x, # T x M
|
|
lod, # 1 x N
|
|
wx=None, # M x 4D
|
|
bx=None, # 1 x 4D
|
|
h0=None, # N x D
|
|
c0=None, # N x D
|
|
w_h=None, # D x 4D
|
|
w_b=None, # 1 x 4D
|
|
w_c=None, # 1 x 3D
|
|
is_reverse=False,
|
|
act_gate=None,
|
|
act_cell=None,
|
|
act_cand=None):
|
|
return lstm(
|
|
fc(x, wx, bx), lod, h0, c0, w_h, w_b, w_c, is_reverse, act_gate,
|
|
act_cell, act_cand)
|
|
|
|
|
|
class TestFusionLSTMOp(OpTest):
|
|
def set_conf(self):
|
|
pass
|
|
|
|
def setUp(self):
|
|
self.op_type = 'fusion_lstm'
|
|
self.lod = [[2, 3, 5, 4]]
|
|
self.M = 8
|
|
self.D = 16
|
|
self.has_initial_state = False
|
|
self.use_peepholes = False
|
|
self.is_reverse = False
|
|
self.act_gate = 'sigmoid'
|
|
self.act_cell = 'tanh'
|
|
self.act_cand = 'tanh'
|
|
self.set_conf()
|
|
|
|
T = sum(self.lod[0])
|
|
bs = len(self.lod[0])
|
|
|
|
x = np.random.normal(size=(T, self.M)).astype('float32')
|
|
if self.has_initial_state:
|
|
h0 = np.random.normal(size=(bs, self.D)).astype('float32')
|
|
c0 = np.random.normal(size=(bs, self.D)).astype('float32')
|
|
else:
|
|
h0 = np.zeros((bs, self.D)).astype('float32')
|
|
c0 = np.zeros((bs, self.D)).astype('float32')
|
|
|
|
wh = np.random.normal(size=(self.D, 4 * self.D)).astype('float32')
|
|
|
|
if self.use_peepholes:
|
|
b = np.random.normal(size=(1, 7 * self.D)).astype('float32')
|
|
else:
|
|
b = np.random.normal(size=(1, 4 * self.D)).astype('float32')
|
|
w_b = np.copy(b[:, 0:4 * self.D])
|
|
w_c = b[:, 4 * self.D:] if self.use_peepholes else None
|
|
|
|
# this is the weight of fc
|
|
wx = np.random.normal(size=(self.M, 4 * self.D)).astype('float32')
|
|
# this is the bias of fc
|
|
# and it should be manually added into the bias of this fusion LSTM
|
|
bx = np.random.normal(size=(1, 4 * self.D)).astype('float32')
|
|
b[0, 0:4 * self.D] += bx[0, :]
|
|
h, c = fusion_lstm(x, self.lod, wx, bx, h0, c0, wh, w_b, w_c,
|
|
self.is_reverse, ACTIVATION[self.act_gate],
|
|
ACTIVATION[self.act_cell], ACTIVATION[self.act_cand])
|
|
|
|
self.inputs = {
|
|
'X': (x, self.lod),
|
|
'WeightX': wx,
|
|
'WeightH': wh,
|
|
'Bias': b
|
|
}
|
|
|
|
if self.has_initial_state:
|
|
self.inputs['H0'] = h0
|
|
self.inputs['C0'] = c0
|
|
|
|
self.outputs = {
|
|
'Hidden': (h, self.lod),
|
|
'Cell': (c, self.lod),
|
|
}
|
|
self.attrs = {
|
|
'use_peepholes': self.use_peepholes,
|
|
'is_reverse': self.is_reverse,
|
|
'gate_activation': self.act_gate,
|
|
'cell_activation': self.act_cell,
|
|
'candidate_activation': self.act_cand
|
|
}
|
|
|
|
def test_check_output(self):
|
|
for use_seq in {True, False}:
|
|
self.attrs['use_seq'] = use_seq
|
|
self.check_output()
|
|
|
|
|
|
class TestFusionLSTMOpInit(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.has_initial_state = True
|
|
|
|
|
|
class TestFusionLSTMOpReverse(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.is_reverse = True
|
|
|
|
|
|
class TestFusionLSTMOpInitReverse(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.has_initial_state = True
|
|
self.is_reverse = True
|
|
|
|
|
|
class TestFusionLSTMOpMD1(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.M = 36
|
|
self.D = 8
|
|
|
|
|
|
class TestFusionLSTMOpMD2(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.M = 8
|
|
self.D = 8
|
|
|
|
|
|
class TestFusionLSTMOpMD3(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.M = 15
|
|
self.D = 3
|
|
|
|
|
|
class TestFusionLSTMOpBS1(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.lod = [[3]]
|
|
self.D = 16
|
|
|
|
|
|
class TestFusionLSTMOpPeepholes(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.use_peepholes = True
|
|
|
|
|
|
class TestFusionLSTMOpPeepholesInit(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.use_peepholes = True
|
|
self.has_initial_state = True
|
|
|
|
|
|
class TestFusionLSTMOpPeepholesReverse(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.use_peepholes = True
|
|
self.is_reverse = True
|
|
|
|
|
|
class TestFusionLSTMOpPeepholesInitReverse(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.use_peepholes = True
|
|
self.has_initial_state = True
|
|
self.is_reverse = True
|
|
|
|
|
|
class TestFusionLSTMOpPeepholesBS1(TestFusionLSTMOp):
|
|
def set_conf(self):
|
|
self.use_peepholes = True
|
|
self.lod = [[2]]
|
|
self.D = 8
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|