You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_huber_loss_op.py

80 lines
2.5 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
def huber_loss_forward(val, delta):
abs_val = abs(val)
if abs_val <= delta:
return 0.5 * val * val
else:
return delta * (abs_val - 0.5 * delta)
class TestHuberLossOp(OpTest):
def setUp(self):
self.op_type = 'huber_loss'
self.samples_num = 64
self.delta = 1.0
self.init_input()
residual = self.inputs['Y'].reshape(
self.samples_num, 1) - self.inputs['X'].reshape(self.samples_num, 1)
loss = np.vectorize(huber_loss_forward)(residual,
self.delta).astype('float32')
self.attrs = {'delta': self.delta}
self.outputs = {
'Residual': residual,
'Out': loss.reshape((self.samples_num, 1))
}
def init_input(self):
self.inputs = {
'X': np.random.uniform(0, 1.,
(self.samples_num, 1)).astype('float32'),
'Y': np.random.uniform(0, 1.,
(self.samples_num, 1)).astype('float32'),
}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.008)
def test_check_grad_ingore_x(self):
self.check_grad(
['Y'], 'Out', max_relative_error=0.008, no_grad_set=set("residual"))
def test_check_grad_ingore_y(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.008, no_grad_set=set('residual'))
def TestHuberLossOp1(TestHuberLossOp):
def init_input(self):
self.inputs = {
'X': np.random.uniform(0, 1.,
(self.samples_num, 1)).astype('float32'),
'Y': np.random.uniform(0, 1., (self.samples_num)).astype('float32'),
}
if __name__ == '__main__':
unittest.main()