You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
2.9 KiB
86 lines
2.9 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.nets as nets
|
|
from paddle.fluid.framework import Program
|
|
|
|
|
|
def conv_block(input, num_filter, groups, dropouts):
|
|
return nets.img_conv_group(
|
|
input=input,
|
|
pool_size=2,
|
|
pool_stride=2,
|
|
conv_num_filter=[num_filter] * groups,
|
|
conv_filter_size=3,
|
|
conv_act='relu',
|
|
conv_with_batchnorm=True,
|
|
conv_batchnorm_drop_rate=dropouts,
|
|
pool_type='max')
|
|
|
|
|
|
class TestLayer(unittest.TestCase):
|
|
def test_batch_norm_layer(self):
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
images = fluid.layers.data(
|
|
name='pixel', shape=[3, 48, 48], dtype='float32')
|
|
hidden1 = fluid.layers.batch_norm(input=images)
|
|
hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu')
|
|
fluid.layers.batch_norm(input=hidden2)
|
|
|
|
print(str(main_program))
|
|
|
|
def test_dropout_layer(self):
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
images = fluid.layers.data(
|
|
name='pixel', shape=[3, 48, 48], dtype='float32')
|
|
fluid.layers.dropout(x=images, dropout_prob=0.5)
|
|
|
|
print(str(main_program))
|
|
|
|
def test_img_conv_group(self):
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
|
|
with fluid.program_guard(main_program, startup_program):
|
|
images = fluid.layers.data(
|
|
name='pixel', shape=[3, 48, 48], dtype='float32')
|
|
conv1 = conv_block(images, 64, 2, [0.3, 0])
|
|
conv_block(conv1, 256, 3, [0.4, 0.4, 0])
|
|
|
|
print(str(main_program))
|
|
|
|
def test_elementwise_add_with_act(self):
|
|
main_program = Program()
|
|
startup_program = Program()
|
|
with fluid.program_guard(main_program, startup_program):
|
|
image1 = fluid.layers.data(
|
|
name='pixel1', shape=[3, 48, 48], dtype='float32')
|
|
image2 = fluid.layers.data(
|
|
name='pixel2', shape=[3, 48, 48], dtype='float32')
|
|
fluid.layers.elementwise_add(x=image1, y=image2, act='relu')
|
|
print(main_program)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|