You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_imperative_basic.py

424 lines
16 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import contextlib
import unittest
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import core
from paddle.fluid import FC
from test_imperative_base import new_program_scope
class MyLayer(fluid.Layer):
def __init__(self, name_scope):
super(MyLayer, self).__init__(name_scope)
def forward(self, inputs):
x = fluid.layers.relu(inputs)
self._x_for_debug = x
x = fluid.layers.elementwise_mul(x, x)
x = fluid.layers.reduce_sum(x)
return [x]
class MLP(fluid.Layer):
def __init__(self, name_scope):
super(MLP, self).__init__(name_scope)
self._fc1 = FC(self.full_name(),
3,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)))
self._fc2 = FC(self.full_name(),
4,
param_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
bias_attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)))
def forward(self, inputs):
x = self._fc1(inputs)
x = self._fc2(x)
x = fluid.layers.reduce_sum(x)
return x
class SimpleRNNCell(fluid.Layer):
def __init__(self, name_scope, step_input_size, hidden_size, output_size,
param_attr):
super(SimpleRNNCell, self).__init__(name_scope)
self.step_input_size = step_input_size
self.hidden_size = hidden_size
self.output_size = output_size
self._dtype = core.VarDesc.VarType.FP32
self.param_attr = param_attr
def _build_once(self, inputs, pre_hidden):
i2h_param_shape = [self.step_input_size, self.hidden_size]
h2h_param_shape = [self.hidden_size, self.hidden_size]
h2o_param_shape = [self.output_size, self.hidden_size]
self._i2h_w = self.create_parameter(
attr=self.param_attr,
shape=i2h_param_shape,
dtype=self._dtype,
is_bias=False)
self._h2h_w = self.create_parameter(
attr=self.param_attr,
shape=h2h_param_shape,
dtype=self._dtype,
is_bias=False)
self._h2o_w = self.create_parameter(
attr=self.param_attr,
shape=h2o_param_shape,
dtype=self._dtype,
is_bias=False)
def forward(self, input, pre_hidden):
tmp_i2h = self.create_variable(dtype=self._dtype)
tmp_h2h = self.create_variable(dtype=self._dtype)
hidden = self.create_variable(dtype=self._dtype)
out = self.create_variable(dtype=self._dtype)
softmax_out = self.create_variable(dtype=self._dtype)
reduce_out = self.create_variable(dtype=self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": input,
"Y": self._i2h_w},
outputs={"Out": tmp_i2h},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="mul",
inputs={"X": pre_hidden,
"Y": self._h2h_w},
outputs={"Out": tmp_h2h},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="elementwise_add",
inputs={'X': tmp_h2h,
'Y': tmp_i2h},
outputs={'Out': hidden},
attrs={'axis': -1,
'use_mkldnn': False})
hidden = self._helper.append_activation(hidden, act='tanh')
self._helper.append_op(
type="mul",
inputs={"X": hidden,
"Y": self._h2o_w},
outputs={"Out": out},
attrs={"x_num_col_dims": 1,
"y_num_col_dims": 1})
self._helper.append_op(
type="softmax",
inputs={"X": out},
outputs={"Out": softmax_out},
attrs={"use_cudnn": False})
self._helper.append_op(
type='reduce_sum',
inputs={'X': softmax_out},
outputs={'Out': reduce_out},
attrs={'dim': [],
'keep_dim': False,
'reduce_all': True})
return reduce_out, hidden
class SimpleRNN(fluid.Layer):
def __init__(self, name_scope):
super(SimpleRNN, self).__init__(name_scope)
self.seq_len = 4
self._cell = SimpleRNNCell(
self.full_name(),
3,
3,
3,
fluid.ParamAttr(initializer=fluid.initializer.Constant(value=0.1)))
def forward(self, inputs):
outs = list()
pre_hiddens = list()
init_hidden = self.create_parameter(
attr=fluid.ParamAttr(
initializer=fluid.initializer.Constant(value=0.1)),
shape=[1, 3],
dtype='float32',
is_bias=False)
pre_hidden = init_hidden
for i in range(self.seq_len):
input = fluid.layers.slice(
inputs, axes=[1], starts=[i], ends=[i + 1])
input = fluid.layers.reshape(input, shape=[1, 3])
out_softmax, pre_hidden = self._cell(input, pre_hidden)
outs.append(out_softmax)
return outs, pre_hiddens
class TestImperative(unittest.TestCase):
def test_sum_op(self):
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs = []
for _ in range(10):
tmp = fluid.dygraph.base.to_variable(x)
tmp.stop_gradient = False
inputs.append(tmp)
ret = fluid.layers.sums(inputs)
loss = fluid.layers.reduce_sum(ret)
loss.backward()
with fluid.dygraph.guard():
inputs2 = []
for _ in range(10):
tmp = fluid.dygraph.base.to_variable(x)
tmp.stop_gradient = False
inputs2.append(tmp)
ret2 = fluid.layers.sums(inputs2)
loss2 = fluid.layers.reduce_sum(ret2)
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
loss2.backward(backward_strategy)
self.assertTrue(np.allclose(ret.numpy(), x * 10))
self.assertTrue(np.allclose(inputs[0].gradient(), x))
self.assertTrue(np.allclose(ret2.numpy(), x * 10))
a = inputs2[0].gradient()
self.assertTrue(np.allclose(inputs2[0].gradient(), x))
def test_layer(self):
with fluid.dygraph.guard():
cl = core.Layer()
cl.forward([])
l = fluid.Layer("l")
self.assertRaises(NotImplementedError, l.forward, [])
def test_layer_in_out(self):
np_inp = np.array([1.0, 2.0, -1.0], dtype=np.float32)
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
var_inp.stop_gradient = False
l = MyLayer("my_layer")
x = l(var_inp)[0]
self.assertIsNotNone(x)
dy_out = x.numpy()
x.backward()
dy_grad = l._x_for_debug.gradient()
with fluid.dygraph.guard():
var_inp2 = fluid.dygraph.base.to_variable(np_inp)
var_inp2.stop_gradient = False
l2 = MyLayer("my_layer")
x2 = l2(var_inp2)[0]
self.assertIsNotNone(x2)
dy_out2 = x2.numpy()
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
x2.backward(backward_strategy)
dy_grad2 = l2._x_for_debug.gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[3], append_batch_size=False)
l = MyLayer("my_layer")
x = l(inp)[0]
param_grads = fluid.backward.append_backward(
x, parameter_list=[l._x_for_debug.name])[0]
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
fetch_list=[x.name, param_grads[1].name])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
self.assertTrue(np.allclose(dy_out2, static_out))
self.assertTrue(np.allclose(dy_grad2, static_grad))
def test_mlp(self):
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
mlp = MLP("mlp")
out = mlp(var_inp)
dy_out = out.numpy()
out.backward()
dy_grad = mlp._fc1._w.gradient()
with fluid.dygraph.guard():
var_inp2 = fluid.dygraph.base.to_variable(np_inp)
mlp2 = MLP("mlp")
out2 = mlp2(var_inp2)
dy_out2 = out2.numpy()
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
out2.backward(backward_strategy)
dy_grad2 = mlp2._fc1._w.gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
mlp = MLP("mlp")
out = mlp(inp)
param_grads = fluid.backward.append_backward(
out, parameter_list=[mlp._fc1._w.name])[0]
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
exe.run(fluid.default_startup_program())
static_out, static_grad = exe.run(
feed={inp.name: np_inp},
fetch_list=[out.name, param_grads[1].name])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad, static_grad))
self.assertTrue(np.allclose(dy_out2, static_out))
self.assertTrue(np.allclose(dy_grad2, static_grad))
params = mlp.parameters(True)
self.assertEqual("mlp/MLP_0/FC_0.w_0", params[0].name)
self.assertEqual("mlp/MLP_0/FC_0.b_0", params[1].name)
self.assertEqual("mlp/MLP_0/FC_1.w_0", params[2].name)
self.assertEqual("mlp/MLP_0/FC_1.b_0", params[3].name)
self.assertEqual(len(params), 4)
sublayers = mlp.sublayers(True)
self.assertEqual(mlp._fc1, sublayers[0])
self.assertEqual(mlp._fc2, sublayers[1])
self.assertEqual(len(sublayers), 2)
def test_dygraph_vs_static(self):
inp1 = np.random.rand(4, 3, 3)
inp2 = np.random.rand(4, 3, 3)
# dynamic graph
with fluid.dygraph.guard():
if np.sum(inp1) < np.sum(inp2):
x = fluid.layers.elementwise_add(inp1, inp2)
else:
x = fluid.layers.elementwise_sub(inp1, inp2)
dygraph_result = x.numpy()
# static graph
with new_program_scope():
inp_data1 = fluid.layers.data(
name='inp1', shape=[3, 3], dtype=np.float32)
inp_data2 = fluid.layers.data(
name='inp2', shape=[3, 3], dtype=np.float32)
a = fluid.layers.expand(
fluid.layers.reshape(
fluid.layers.reduce_sum(inp_data1), [1, 1]), [4, 1])
b = fluid.layers.expand(
fluid.layers.reshape(
fluid.layers.reduce_sum(inp_data2), [1, 1]), [4, 1])
cond = fluid.layers.less_than(x=a, y=b)
ie = fluid.layers.IfElse(cond)
with ie.true_block():
d1 = ie.input(inp_data1)
d2 = ie.input(inp_data2)
d3 = fluid.layers.elementwise_add(d1, d2)
ie.output(d3)
with ie.false_block():
d1 = ie.input(inp_data1)
d2 = ie.input(inp_data2)
d3 = fluid.layers.elementwise_sub(d1, d2)
ie.output(d3)
out = ie()
exe = fluid.Executor(fluid.CPUPlace(
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
static_result = exe.run(fluid.default_main_program(),
feed={'inp1': inp1,
'inp2': inp2},
fetch_list=out)[0]
self.assertTrue(np.allclose(dygraph_result, static_result))
def test_rnn(self):
np_inp = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0],
[10.0, 11.0, 12.0]])
np_inp = np_inp.reshape((1, 4, 3))
np_inp = np_inp.astype(np.float32)
with fluid.dygraph.guard():
var_inp = fluid.dygraph.base.to_variable(np_inp)
var_inp = fluid.layers.reshape(var_inp, shape=[1, 4, 3])
simple_rnn = SimpleRNN("simple_rnn")
outs, pre_hiddens = simple_rnn.forward(var_inp)
dy_out = outs[3].numpy()
outs[3].backward()
dy_grad_h2o = simple_rnn._cell._h2o_w.gradient()
dy_grad_h2h = simple_rnn._cell._h2h_w.gradient()
dy_grad_i2h = simple_rnn._cell._i2h_w.gradient()
with fluid.dygraph.guard():
var_inp2 = fluid.dygraph.base.to_variable(np_inp)
var_inp2 = fluid.layers.reshape(var_inp2, shape=[1, 4, 3])
simple_rnn2 = SimpleRNN("simple_rnn")
outs2, pre_hiddens2 = simple_rnn2.forward(var_inp2)
dy_out2 = outs2[3].numpy()
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
outs2[3].backward(backward_strategy)
dy_grad_h2o2 = simple_rnn2._cell._h2o_w.gradient()
dy_grad_h2h2 = simple_rnn2._cell._h2h_w.gradient()
dy_grad_i2h2 = simple_rnn2._cell._i2h_w.gradient()
with new_program_scope():
inp = fluid.layers.data(
name="inp", shape=[1, 4, 3], append_batch_size=False)
simple_rnn = SimpleRNN("simple_rnn")
outs, pre_hiddens = simple_rnn(inp)
param_grads = fluid.backward.append_backward(outs[3])
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
static_out, static_grad_h2o, static_grad_h2h, static_grad_i2h = exe.run(
feed={inp.name: np_inp},
fetch_list=[
outs[3].name, param_grads[0][1].name,
param_grads[1][1].name, param_grads[2][1].name
])
self.assertTrue(np.allclose(dy_out, static_out))
self.assertTrue(np.allclose(dy_grad_h2o, static_grad_h2o))
self.assertTrue(np.allclose(dy_grad_h2h, static_grad_h2h))
self.assertTrue(np.allclose(dy_grad_i2h, static_grad_i2h))
self.assertTrue(np.allclose(dy_out2, static_out))
self.assertTrue(np.allclose(dy_grad_h2o2, static_grad_h2o))
self.assertTrue(np.allclose(dy_grad_h2h2, static_grad_h2h))
self.assertTrue(np.allclose(dy_grad_i2h2, static_grad_i2h))
def test_layer_attrs(self):
layer = fluid.dygraph.Layer("test")
layer.test_attr = 1
self.assertFalse(hasattr(layer, "whatever"))
self.assertTrue(hasattr(layer, "test_attr"))
self.assertEqual(layer.test_attr, 1)
if __name__ == '__main__':
unittest.main()