You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
384 lines
13 KiB
384 lines
13 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import contextlib
|
|
import unittest
|
|
import numpy as np
|
|
import six
|
|
|
|
import paddle
|
|
import paddle.fluid as fluid
|
|
from paddle.fluid import core
|
|
from paddle.fluid.layer_helper import LayerHelper
|
|
from paddle.fluid import Conv2D, Pool2D, BatchNorm, FC
|
|
from paddle.fluid.dygraph.base import to_variable
|
|
from test_imperative_base import new_program_scope
|
|
|
|
batch_size = 8
|
|
train_parameters = {
|
|
"input_size": [3, 224, 224],
|
|
"input_mean": [0.485, 0.456, 0.406],
|
|
"input_std": [0.229, 0.224, 0.225],
|
|
"learning_strategy": {
|
|
"name": "piecewise_decay",
|
|
"batch_size": batch_size,
|
|
"epochs": [30, 60, 90],
|
|
"steps": [0.1, 0.01, 0.001, 0.0001]
|
|
},
|
|
"batch_size": batch_size,
|
|
"lr": 0.1,
|
|
"total_images": 1281164,
|
|
}
|
|
|
|
|
|
def optimizer_setting(params):
|
|
ls = params["learning_strategy"]
|
|
if ls["name"] == "piecewise_decay":
|
|
if "total_images" not in params:
|
|
total_images = 1281167
|
|
else:
|
|
total_images = params["total_images"]
|
|
batch_size = ls["batch_size"]
|
|
step = int(total_images / batch_size + 1)
|
|
|
|
bd = [step * e for e in ls["epochs"]]
|
|
base_lr = params["lr"]
|
|
lr = []
|
|
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
|
|
optimizer = fluid.optimizer.SGD(learning_rate=0.01)
|
|
# TODO(minqiyang): Add learning rate scheduler support to dygraph mode
|
|
# optimizer = fluid.optimizer.Momentum(
|
|
# learning_rate=params["lr"],
|
|
# learning_rate=fluid.layers.piecewise_decay(
|
|
# boundaries=bd, values=lr),
|
|
# momentum=0.9,
|
|
# regularization=fluid.regularizer.L2Decay(1e-4))
|
|
|
|
return optimizer
|
|
|
|
|
|
class ConvBNLayer(fluid.Layer):
|
|
def __init__(self,
|
|
name_scope,
|
|
num_filters,
|
|
filter_size,
|
|
stride=1,
|
|
groups=1,
|
|
act=None):
|
|
super(ConvBNLayer, self).__init__(name_scope)
|
|
|
|
self._conv = Conv2D(
|
|
self.full_name(),
|
|
num_filters=num_filters,
|
|
filter_size=filter_size,
|
|
stride=stride,
|
|
padding=(filter_size - 1) // 2,
|
|
groups=groups,
|
|
act=None,
|
|
bias_attr=None)
|
|
|
|
self._batch_norm = BatchNorm(self.full_name(), num_filters, act=act)
|
|
|
|
def forward(self, inputs):
|
|
y = self._conv(inputs)
|
|
y = self._batch_norm(y)
|
|
|
|
return y
|
|
|
|
|
|
class BottleneckBlock(fluid.Layer):
|
|
def __init__(self, name_scope, num_filters, stride, shortcut=True):
|
|
super(BottleneckBlock, self).__init__(name_scope)
|
|
|
|
self.conv0 = ConvBNLayer(
|
|
self.full_name(),
|
|
num_filters=num_filters,
|
|
filter_size=1,
|
|
act='relu')
|
|
self.conv1 = ConvBNLayer(
|
|
self.full_name(),
|
|
num_filters=num_filters,
|
|
filter_size=3,
|
|
stride=stride,
|
|
act='relu')
|
|
self.conv2 = ConvBNLayer(
|
|
self.full_name(),
|
|
num_filters=num_filters * 4,
|
|
filter_size=1,
|
|
act=None)
|
|
|
|
if not shortcut:
|
|
self.short = ConvBNLayer(
|
|
self.full_name(),
|
|
num_filters=num_filters * 4,
|
|
filter_size=1,
|
|
stride=stride)
|
|
|
|
self.shortcut = shortcut
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv0(inputs)
|
|
conv1 = self.conv1(y)
|
|
conv2 = self.conv2(conv1)
|
|
|
|
if self.shortcut:
|
|
short = inputs
|
|
else:
|
|
short = self.short(inputs)
|
|
|
|
y = fluid.layers.elementwise_add(x=short, y=conv2)
|
|
|
|
layer_helper = LayerHelper(self.full_name(), act='relu')
|
|
return layer_helper.append_activation(y)
|
|
|
|
|
|
class ResNet(fluid.Layer):
|
|
def __init__(self, name_scope, layers=50, class_dim=102):
|
|
super(ResNet, self).__init__(name_scope)
|
|
|
|
self.layers = layers
|
|
supported_layers = [50, 101, 152]
|
|
assert layers in supported_layers, \
|
|
"supported layers are {} but input layer is {}".format(supported_layers, layers)
|
|
|
|
if layers == 50:
|
|
depth = [3, 4, 6, 3]
|
|
elif layers == 101:
|
|
depth = [3, 4, 23, 3]
|
|
elif layers == 152:
|
|
depth = [3, 8, 36, 3]
|
|
num_filters = [64, 128, 256, 512]
|
|
|
|
self.conv = ConvBNLayer(
|
|
self.full_name(),
|
|
num_filters=64,
|
|
filter_size=7,
|
|
stride=2,
|
|
act='relu')
|
|
self.pool2d_max = Pool2D(
|
|
self.full_name(),
|
|
pool_size=3,
|
|
pool_stride=2,
|
|
pool_padding=1,
|
|
pool_type='max')
|
|
|
|
self.bottleneck_block_list = []
|
|
for block in range(len(depth)):
|
|
shortcut = False
|
|
for i in range(depth[block]):
|
|
bottleneck_block = self.add_sublayer(
|
|
'bb_%d_%d' % (block, i),
|
|
BottleneckBlock(
|
|
self.full_name(),
|
|
num_filters=num_filters[block],
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
shortcut=shortcut))
|
|
self.bottleneck_block_list.append(bottleneck_block)
|
|
shortcut = True
|
|
|
|
self.pool2d_avg = Pool2D(
|
|
self.full_name(), pool_size=7, pool_type='avg', global_pooling=True)
|
|
|
|
import math
|
|
stdv = 1.0 / math.sqrt(2048 * 1.0)
|
|
|
|
self.out = FC(self.full_name(),
|
|
size=class_dim,
|
|
act='softmax',
|
|
param_attr=fluid.param_attr.ParamAttr(
|
|
initializer=fluid.initializer.Uniform(-stdv, stdv)))
|
|
|
|
def forward(self, inputs):
|
|
y = self.conv(inputs)
|
|
y = self.pool2d_max(y)
|
|
for bottleneck_block in self.bottleneck_block_list:
|
|
y = bottleneck_block(y)
|
|
y = self.pool2d_avg(y)
|
|
y = self.out(y)
|
|
return y
|
|
|
|
|
|
class TestDygraphResnet(unittest.TestCase):
|
|
def reader_decorator(self, reader):
|
|
def _reader_imple():
|
|
for item in reader():
|
|
doc = np.array(item[0]).reshape(3, 224, 224)
|
|
label = np.array(item[1]).astype('int64').reshape(1)
|
|
yield doc, label
|
|
|
|
return _reader_imple
|
|
|
|
def test_resnet_float32(self):
|
|
seed = 90
|
|
|
|
batch_size = train_parameters["batch_size"]
|
|
batch_num = 10
|
|
|
|
with fluid.dygraph.guard():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
resnet = ResNet("resnet")
|
|
optimizer = optimizer_setting(train_parameters)
|
|
np.random.seed(seed)
|
|
import random
|
|
random.seed = seed
|
|
|
|
batch_py_reader = fluid.io.PyReader(capacity=1)
|
|
batch_py_reader.decorate_sample_list_generator(
|
|
paddle.batch(
|
|
self.reader_decorator(
|
|
paddle.dataset.flowers.train(use_xmap=False)),
|
|
batch_size=batch_size,
|
|
drop_last=True),
|
|
places=fluid.CPUPlace())
|
|
|
|
dy_param_init_value = {}
|
|
for param in resnet.parameters():
|
|
dy_param_init_value[param.name] = param.numpy()
|
|
|
|
for batch_id, data in enumerate(batch_py_reader()):
|
|
if batch_id >= batch_num:
|
|
break
|
|
|
|
img = data[0]
|
|
label = data[1]
|
|
label.stop_gradient = True
|
|
|
|
out = resnet(img)
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
|
|
dy_out = avg_loss.numpy()
|
|
|
|
if batch_id == 0:
|
|
for param in resnet.parameters():
|
|
if param.name not in dy_param_init_value:
|
|
dy_param_init_value[param.name] = param.numpy()
|
|
|
|
avg_loss.backward()
|
|
|
|
dy_grad_value = {}
|
|
for param in resnet.parameters():
|
|
if param.trainable:
|
|
np_array = np.array(param._ivar._grad_ivar().value()
|
|
.get_tensor())
|
|
dy_grad_value[param.name + core.grad_var_suffix(
|
|
)] = np_array
|
|
|
|
optimizer.minimize(avg_loss)
|
|
resnet.clear_gradients()
|
|
|
|
dy_param_value = {}
|
|
for param in resnet.parameters():
|
|
dy_param_value[param.name] = param.numpy()
|
|
|
|
with new_program_scope():
|
|
fluid.default_startup_program().random_seed = seed
|
|
fluid.default_main_program().random_seed = seed
|
|
|
|
exe = fluid.Executor(fluid.CPUPlace(
|
|
) if not core.is_compiled_with_cuda() else fluid.CUDAPlace(0))
|
|
|
|
resnet = ResNet("resnet")
|
|
optimizer = optimizer_setting(train_parameters)
|
|
|
|
np.random.seed(seed)
|
|
import random
|
|
random.seed = seed
|
|
train_reader = paddle.batch(
|
|
paddle.dataset.flowers.train(use_xmap=False),
|
|
batch_size=batch_size)
|
|
|
|
img = fluid.layers.data(
|
|
name='pixel', shape=[3, 224, 224], dtype='float32')
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
out = resnet(img)
|
|
loss = fluid.layers.cross_entropy(input=out, label=label)
|
|
avg_loss = fluid.layers.mean(x=loss)
|
|
optimizer.minimize(avg_loss)
|
|
|
|
# initialize params and fetch them
|
|
static_param_init_value = {}
|
|
static_param_name_list = []
|
|
static_grad_name_list = []
|
|
for param in resnet.parameters():
|
|
static_param_name_list.append(param.name)
|
|
for param in resnet.parameters():
|
|
if param.trainable:
|
|
static_grad_name_list.append(param.name +
|
|
core.grad_var_suffix())
|
|
|
|
out = exe.run(fluid.default_startup_program(),
|
|
fetch_list=static_param_name_list)
|
|
|
|
for i in range(len(static_param_name_list)):
|
|
static_param_init_value[static_param_name_list[i]] = out[i]
|
|
|
|
for batch_id, data in enumerate(train_reader()):
|
|
if batch_id >= batch_num:
|
|
break
|
|
|
|
static_x_data = np.array(
|
|
[x[0].reshape(3, 224, 224) for x in data]).astype('float32')
|
|
y_data = np.array([x[1] for x in data]).astype('int64').reshape(
|
|
[batch_size, 1])
|
|
|
|
fetch_list = [avg_loss.name]
|
|
fetch_list.extend(static_param_name_list)
|
|
fetch_list.extend(static_grad_name_list)
|
|
out = exe.run(fluid.default_main_program(),
|
|
feed={"pixel": static_x_data,
|
|
"label": y_data},
|
|
fetch_list=fetch_list)
|
|
|
|
static_param_value = {}
|
|
static_grad_value = {}
|
|
static_out = out[0]
|
|
param_start_pos = 1
|
|
grad_start_pos = len(static_param_name_list) + param_start_pos
|
|
for i in range(param_start_pos,
|
|
len(static_param_name_list) + param_start_pos):
|
|
static_param_value[static_param_name_list[
|
|
i - param_start_pos]] = out[i]
|
|
for i in range(grad_start_pos,
|
|
len(static_grad_name_list) + grad_start_pos):
|
|
static_grad_value[static_grad_name_list[
|
|
i - grad_start_pos]] = out[i]
|
|
|
|
self.assertTrue(np.allclose(static_out, dy_out))
|
|
|
|
self.assertEqual(len(dy_param_init_value), len(static_param_init_value))
|
|
|
|
for key, value in six.iteritems(static_param_init_value):
|
|
self.assertTrue(np.allclose(value, dy_param_init_value[key]))
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
self.assertEqual(len(dy_grad_value), len(static_grad_value))
|
|
for key, value in six.iteritems(static_grad_value):
|
|
self.assertTrue(np.allclose(value, dy_grad_value[key]))
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
self.assertEqual(len(dy_param_value), len(static_param_value))
|
|
for key, value in six.iteritems(static_param_value):
|
|
self.assertTrue(np.allclose(value, dy_param_value[key]))
|
|
self.assertTrue(np.isfinite(value.all()))
|
|
self.assertFalse(np.isnan(value.any()))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|