You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
72 lines
2.6 KiB
72 lines
2.6 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import numpy.random as random
|
|
import sys
|
|
import math
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestIOUSimilarityOp(OpTest):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
self.op_type = "iou_similarity"
|
|
self.boxes1 = random.rand(2, 4).astype('float32')
|
|
self.boxes2 = random.rand(3, 4).astype('float32')
|
|
self.output = random.rand(2, 3).astype('float32')
|
|
for row in range(self.boxes1.shape[0]):
|
|
for col in range(self.boxes2.shape[0]):
|
|
xmin1, ymin1, xmax1, ymax1 = self.boxes1[row]
|
|
xmin2, ymin2, xmax2, ymax2 = self.boxes2[col]
|
|
area1 = (ymax1 - ymin1) * (xmax1 - xmin1)
|
|
area2 = (ymax2 - ymin2) * (xmax2 - xmin2)
|
|
inter_xmax = min(xmax1, xmax2)
|
|
inter_ymax = min(ymax1, ymax2)
|
|
inter_xmin = max(xmin1, xmin2)
|
|
inter_ymin = max(ymin1, ymin2)
|
|
inter_height = inter_ymax - inter_ymin
|
|
inter_width = inter_xmax - inter_xmin
|
|
inter_height = max(inter_height, 0)
|
|
inter_width = max(inter_width, 0)
|
|
inter_area = inter_width * inter_height
|
|
union_area = area1 + area2 - inter_area
|
|
sim_score = inter_area / union_area
|
|
self.output[row, col] = sim_score
|
|
self.inputs = {'X': self.boxes1, 'Y': self.boxes2}
|
|
|
|
self.outputs = {'Out': self.output}
|
|
|
|
|
|
class TestIOUSimilarityOpWithLoD(TestIOUSimilarityOp):
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def setUp(self):
|
|
super(TestIOUSimilarityOpWithLoD, self).setUp()
|
|
self.boxes1_lod = [[1, 1]]
|
|
self.output_lod = [[1, 1]]
|
|
|
|
self.inputs = {'X': (self.boxes1, self.boxes1_lod), 'Y': self.boxes2}
|
|
self.outputs = {'Out': (self.output, self.output_lod)}
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|