You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_lamb_op.py

297 lines
9.5 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
class TestLambOp1(OpTest):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-4,
'beta1': 0.78,
'beta2': 0.836,
'weight_decay': 0.01
}
def setUp(self):
'''Test Lamb Op with supplied attributes
'''
self.op_type = "lamb"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.001
self.set_attrs()
beta1_pow = self.attrs['beta1']**10
beta2_pow = self.attrs['beta2']**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
param_out, moment1_out, \
moment2_out = lamb_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out
}
def test_check_output(self):
self.check_output()
class TestLambOp2(TestLambOp1):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-8,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.01
}
class TestLambOpMultipleSteps(TestLambOp1):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-8,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.01
}
self.num_steps = 10
def test_check_output(self):
for _ in range(self.num_steps):
param_out, moment1_out, \
moment2_out = lamb_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out
}
# Verify output for this step
self.check_output()
# Output of this step becomes input for next step
self.inputs['Param'] = param_out
self.inputs['Moment1'] = moment1_out
self.inputs['Moment2'] = moment2_out
# Update powers of Beta1 and Beta2 for next time step
self.inputs['Beta1Pow'] *= self.attrs['beta1']
self.inputs['Beta2Pow'] *= self.attrs['beta1']
# Randomize gradient for next step
self.inputs['Grad'] = np.random.uniform(
-1, 1, (102, 105)).astype("float32")
def lamb_step(inputs, attributes):
'''
Simulate one step of the lamb optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
weight_decay = attributes['weight_decay']
moment1_out = beta1 * moment1 + (1 - beta1) * grad
moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
r_1 = np.linalg.norm(param)
r_2 = np.linalg.norm(moment1_out / (np.sqrt(moment2_out) + epsilon) +
weight_decay * param)
lr_t = lr * r_1 / r_2
param_out = param - lr_t * (moment1_out / (np.sqrt(moment2_out) + epsilon) +
weight_decay * param)
return param_out, moment1_out, moment2_out
def lamb_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
'''
Simulate one step of the lamb optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
# grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
weight_decay = attributes['weight_decay']
moment1_out = np.zeros(shape=[height, row_numel])
moment2_out = np.zeros(shape=[height, row_numel])
param_out = np.zeros(shape=[height, row_numel])
def update_mom(row_id, update_value):
moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
) * update_value
moment2_out[row_id] = beta2 * moment2[row_id] + (
1 - beta2) * np.square(update_value)
moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
) * update_value
moment2_out[row_id] = beta2 * moment2[row_id] + (
1 - beta2) * np.square(update_value)
def update_param():
r_1 = np.linalg.norm(param)
r_2 = np.linalg.norm(moment1_out / (np.sqrt(moment2_out) + epsilon) +
weight_decay * param)
lr_t = lr * r_1 / r_2
param_out = param - lr_t * (moment1_out / (
np.sqrt(moment2_out) + epsilon) + weight_decay * param)
for row_id in range(param_out.shape[0]):
update_value = np.zeros(np_grad[0].shape).astype("float32")
if row_id in rows:
update_value = np_grad[rows.index(row_id)]
update_mom(row_id, update_value)
update_param()
return param_out, moment1_out, moment2_out
class TestSparseLambOp(unittest.TestCase):
def setup(self, scope, place):
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
height = 10
rows = [0, 4, 7]
self.rows = rows
row_numel = 12
self.row_numel = row_numel
self.dense_inputs = {
"Param": np.full((height, row_numel), 5.0).astype("float32"),
"Moment1": np.full((height, row_numel), 5.0).astype("float32"),
"Moment2": np.full((height, row_numel), 5.0).astype("float32"),
'Beta1Pow': np.array([beta1**10]).astype("float32"),
'Beta2Pow': np.array([beta2**10]).astype("float32"),
"LearningRate": np.full((1), 2.0).astype("float32")
}
self.init_output = np.full((height, row_numel), 0.0).astype("float32")
self.attrs = {
'epsilon': epsilon,
'beta1': beta1,
'beta2': beta2,
'weight_decay': 0.05
}
grad_selected_rows = scope.var('Grad').get_selected_rows()
grad_selected_rows.set_height(height)
grad_selected_rows.set_rows(rows)
np_array = np.ones((len(rows), row_numel)).astype("float32")
np_array[0, 0] = 2.0
np_array[2, 8] = 4.0
grad_tensor = grad_selected_rows.get_tensor()
grad_tensor.set(np_array, place)
self.sparse_inputs = ["Grad"]
param_out, mom1, mom2 = lamb_step_sparse(
self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
self.outputs = {
"ParamOut": param_out,
"Moment1Out": mom1,
"Moment2Out": mom2
}
def check_with_place(self, place):
scope = core.Scope()
self.setup(scope, place)
op_args = dict()
for key, np_array in self.dense_inputs.items():
var = scope.var(key).get_tensor()
var.set(np_array, place)
op_args[key] = key
for s in self.sparse_inputs:
op_args[s] = s
for s in self.outputs:
var = scope.var(s).get_tensor()
var.set(self.init_output, place)
op_args[s] = s
for k in self.attrs:
op_args[k] = self.attrs[k]
# create and run sgd operator
lamb_op = Operator("lamb", **op_args)
lamb_op.run(scope, place)
for key, np_array in self.outputs.items():
out_var = scope.var(key).get_tensor()
actual = np.array(out_var)
actual = actual.reshape([actual.size])
np_array = np_array.reshape([np_array.size])
for i in range(np_array.size):
self.assertLess((actual[i] - np_array[i]), 0.00001)
def test_sparse_lamb(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
if __name__ == "__main__":
unittest.main()