You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_lod_reset_op.py

127 lines
4.1 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
class TestLodResetOpByAttr(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[3, 2, 5]]
# target_offset_lod and target_lod are the same lod info represented
# in offset-based format and length-based format, respectively.
target_offset_lod = [0, 7, 10]
target_lod = [7, 3]
self.inputs = {'X': (x, lod)}
# The `target_lod` attribute is still based on offset
self.attrs = {'target_lod': target_offset_lod}
self.outputs = {'Out': (x, [target_lod])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
class TestLodResetOpByInput(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[3, 2, 5]]
# target_offset_lod and target_lod are the same lod info represented
# in offset-based format and length-based format, respectively.
target_offset_lod = [0, 4, 7, 10]
target_lod = [4, 3, 3]
self.inputs = {
'X': (x, lod),
'Y': np.array([target_offset_lod]).astype('int32')
}
self.outputs = {'Out': (x, [target_lod])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out", no_grad_set=set("Y"))
class TestLodResetOpBoth(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[3, 2, 5]]
target_offset_lod_attr = [0, 7, 10]
target_offset_lod_in = [0, 4, 7, 10]
target_lod_in = [4, 3, 3]
self.inputs = {
'X': (x, lod),
'Y': np.array(target_offset_lod_in).astype('int32')
}
self.attrs = {'target_lod': target_offset_lod_attr}
self.outputs = {'Out': (x, [target_lod_in])}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out", no_grad_set=set("Y"))
class TestLodResetOpYIsLoDTensor(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[3, 2, 5]]
y = np.random.random((10, 10)).astype("float32")
target_lod = [[4, 3, 3]]
self.inputs = {'X': (x, lod), 'Y': (y, target_lod)}
self.outputs = {'Out': (x, target_lod)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out", no_grad_set=set("Y"))
class TestLodAppendOpByAttr(OpTest):
def setUp(self):
self.op_type = "lod_reset"
x = np.random.random((10, 20)).astype("float32")
lod = [[3, 2, 5]]
# target_offset_lod and target_lod are the same lod info represented
# in offset-based format and length-based format, respectively.
target_offset_lod = [i for i in range(11)]
self.inputs = {'X': (x, lod)}
out_lod = [[3, 2, 5], [1] * 10]
# The `target_lod` attribute is still based on offset
self.attrs = {'target_lod': target_offset_lod, 'append': True}
self.outputs = {'Out': (x, out_lod)}
def test_check_output(self):
self.check_output()
def test_check_grad(self):
self.check_grad(["X"], "Out")
if __name__ == '__main__':
unittest.main()