You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
192 lines
7.1 KiB
192 lines
7.1 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
from decorator_helper import prog_scope
|
|
import paddle.fluid as fluid
|
|
import numpy
|
|
|
|
|
|
class TestMathOpPatches(unittest.TestCase):
|
|
@prog_scope()
|
|
def test_add_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = a + 10
|
|
ab = fluid.layers.concat(input=[a, b], axis=1)
|
|
c = ab + 10
|
|
d = ab + a
|
|
# e = a + ab
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np, c_np, d_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b, c, d])
|
|
self.assertTrue(numpy.allclose(a_np + 10, b_np))
|
|
ab_np = numpy.concatenate([a_np, b_np], axis=1)
|
|
self.assertTrue(numpy.allclose(ab_np + 10, c_np))
|
|
d_expected = ab_np + numpy.concatenate([a_np, a_np], axis=1)
|
|
self.assertTrue(numpy.allclose(d_expected, d_np))
|
|
|
|
@prog_scope()
|
|
def test_radd_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = 10 + a
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(a_np + 10, b_np))
|
|
|
|
@prog_scope()
|
|
def test_sub_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = a - 10
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(a_np - 10, b_np))
|
|
|
|
@prog_scope()
|
|
def test_radd_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = 10 - a
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(10 - a_np, b_np))
|
|
|
|
@prog_scope()
|
|
def test_mul_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = a * 10
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(a_np * 10, b_np))
|
|
|
|
@prog_scope()
|
|
def test_rmul_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = 10 * a
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(10 * a_np, b_np))
|
|
|
|
@prog_scope()
|
|
def test_div_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = a / 10
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(a_np / 10, b_np))
|
|
|
|
@prog_scope()
|
|
def test_rdiv_scalar(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = 10 / a
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
|
|
|
|
b_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np},
|
|
fetch_list=[b])
|
|
self.assertTrue(numpy.allclose(10 / a_np, b_np))
|
|
|
|
@prog_scope()
|
|
def test_div_two_tensor(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = fluid.layers.data(name="b", shape=[1])
|
|
c = a / b
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = numpy.random.random(size=[10, 1]).astype('float32') + 1e-2
|
|
c_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np,
|
|
'b': b_np},
|
|
fetch_list=[c])
|
|
self.assertTrue(numpy.allclose(a_np / b_np, c_np))
|
|
|
|
@prog_scope()
|
|
def test_mul_two_tensor(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = fluid.layers.data(name="b", shape=[1])
|
|
c = a * b
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
c_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np,
|
|
'b': b_np},
|
|
fetch_list=[c])
|
|
self.assertTrue(numpy.allclose(a_np * b_np, c_np))
|
|
|
|
@prog_scope()
|
|
def test_add_two_tensor(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = fluid.layers.data(name="b", shape=[1])
|
|
c = a + b
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
c_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np,
|
|
'b': b_np},
|
|
fetch_list=[c])
|
|
self.assertTrue(numpy.allclose(a_np + b_np, c_np))
|
|
|
|
@prog_scope()
|
|
def test_sub_two_tensor(self):
|
|
a = fluid.layers.data(name="a", shape=[1])
|
|
b = fluid.layers.data(name="b", shape=[1])
|
|
c = a - b
|
|
place = fluid.CPUPlace()
|
|
exe = fluid.Executor(place)
|
|
a_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
b_np = numpy.random.random(size=[10, 1]).astype('float32')
|
|
c_np = exe.run(fluid.default_main_program(),
|
|
feed={"a": a_np,
|
|
'b': b_np},
|
|
fetch_list=[c])
|
|
self.assertTrue(numpy.allclose(a_np - b_np, c_np))
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|