You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
180 lines
5.7 KiB
180 lines
5.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import math
|
|
from op_test import OpTest
|
|
import paddle.fluid as fluid
|
|
import paddle.fluid.core as core
|
|
import paddle.fluid.framework as framework
|
|
from paddle.fluid.framework import Program, program_guard
|
|
|
|
|
|
class TestOneHotOp(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'one_hot'
|
|
depth = 10
|
|
depth_np = np.array(10).astype('int32')
|
|
dimension = 12
|
|
x_lod = [[4, 1, 3, 3]]
|
|
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
|
|
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
|
|
|
|
out = np.zeros(shape=(np.product(x.shape[:-1]),
|
|
depth)).astype('float32')
|
|
|
|
for i in range(np.product(x.shape)):
|
|
out[i, x[i]] = 1.0
|
|
|
|
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32)}
|
|
self.outputs = {'Out': (out, x_lod)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestOneHotOp_attr(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'one_hot'
|
|
depth = 10
|
|
dimension = 12
|
|
x_lod = [[4, 1, 3, 3]]
|
|
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
|
|
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
|
|
|
|
out = np.zeros(shape=(np.product(x.shape[:-1]),
|
|
depth)).astype('float32')
|
|
|
|
for i in range(np.product(x.shape)):
|
|
out[i, x[i]] = 1.0
|
|
|
|
self.inputs = {'X': (x, x_lod)}
|
|
self.attrs = {'dtype': int(core.VarDesc.VarType.FP32), 'depth': depth}
|
|
self.outputs = {'Out': (out, x_lod)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestOneHotOp_default_dtype(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'one_hot'
|
|
depth = 10
|
|
depth_np = np.array(10).astype('int32')
|
|
dimension = 12
|
|
x_lod = [[4, 1, 3, 3]]
|
|
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
|
|
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
|
|
|
|
out = np.zeros(shape=(np.product(x.shape[:-1]),
|
|
depth)).astype('float32')
|
|
|
|
for i in range(np.product(x.shape)):
|
|
out[i, x[i]] = 1.0
|
|
|
|
self.inputs = {'X': (x, x_lod), 'depth_tensor': depth_np}
|
|
self.attrs = {}
|
|
self.outputs = {'Out': (out, x_lod)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestOneHotOp_default_dtype_attr(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'one_hot'
|
|
depth = 10
|
|
dimension = 12
|
|
x_lod = [[4, 1, 3, 3]]
|
|
x = [np.random.randint(0, depth - 1) for i in range(sum(x_lod[0]))]
|
|
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
|
|
|
|
out = np.zeros(shape=(np.product(x.shape[:-1]),
|
|
depth)).astype('float32')
|
|
|
|
for i in range(np.product(x.shape)):
|
|
out[i, x[i]] = 1.0
|
|
|
|
self.inputs = {'X': (x, x_lod)}
|
|
self.attrs = {'depth': depth}
|
|
self.outputs = {'Out': (out, x_lod)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestOneHotOp_out_of_range(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'one_hot'
|
|
depth = 10
|
|
x_lod = [[4, 1, 3, 3]]
|
|
x = [np.random.choice([-1, depth]) for i in range(sum(x_lod[0]))]
|
|
x = np.array(x).astype('int32').reshape([sum(x_lod[0]), 1])
|
|
|
|
out = np.zeros(shape=(np.product(x.shape[:-1]),
|
|
depth)).astype('float32')
|
|
|
|
self.inputs = {'X': (x, x_lod)}
|
|
self.attrs = {'depth': depth, 'allow_out_of_range': True}
|
|
self.outputs = {'Out': (out, x_lod)}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestOneHotOp_exception(OpTest):
|
|
def setUp(self):
|
|
self.op_type = 'one_hot'
|
|
self.depth = 10
|
|
self.place = core.CPUPlace()
|
|
self.dimension = 12
|
|
self.x = core.LoDTensor()
|
|
x_lod = [[4, 1, 3, 3]]
|
|
data = [np.random.randint(11, 20) for i in range(sum(x_lod[0]))]
|
|
data = np.array(data).astype('int').reshape([sum(x_lod[0]), 1])
|
|
self.x.set(data, self.place)
|
|
self.x.set_recursive_sequence_lengths(x_lod)
|
|
|
|
def test_check_output(self):
|
|
program = Program()
|
|
with program_guard(program):
|
|
x = fluid.layers.data(
|
|
name='x', shape=[self.dimension], dtype='float32', lod_level=1)
|
|
block = program.current_block()
|
|
one_hot_out = block.create_var(
|
|
name="one_hot_out",
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
dtype='float32')
|
|
block.append_op(
|
|
type='one_hot',
|
|
inputs={'X': x},
|
|
attrs={'depth': self.depth},
|
|
outputs={'Out': one_hot_out})
|
|
exe = fluid.Executor(self.place)
|
|
|
|
def run():
|
|
exe.run(feed={'x': self.x},
|
|
fetch_list=[one_hot_out],
|
|
return_numpy=False)
|
|
|
|
self.assertRaises(core.EnforceNotMet, run)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|