You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_reader_reset.py

95 lines
3.3 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
os.environ['CPU_NUM'] = str(1)
import paddle.fluid as fluid
from paddle.fluid import compiler
import paddle
import numpy as np
import unittest
class TestReaderReset(unittest.TestCase):
def prepare_data(self):
def fake_data_generator():
for n in range(self.total_ins_num):
yield np.ones(self.ins_shape) * n, n
return fake_data_generator
def setUp(self):
self.use_cuda = fluid.core.is_compiled_with_cuda()
self.ins_shape = [3]
self.batch_size = 5
self.batch_num = 20
self.total_ins_num = self.batch_size * self.batch_num
self.test_pass_num = 100
self.prepare_data()
def main(self, with_double_buffer):
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
image = fluid.layers.data(
name='image', shape=self.ins_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
data_reader_handle = fluid.io.PyReader(
feed_list=[image, label],
capacity=16,
iterable=False,
use_double_buffer=with_double_buffer)
fetch_list = [image.name, label.name]
place = fluid.CUDAPlace(0) if self.use_cuda else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(startup_prog)
data_reader_handle.decorate_sample_list_generator(
paddle.batch(
self.prepare_data(), batch_size=self.batch_size))
train_cp = compiler.CompiledProgram(main_prog).with_data_parallel()
batch_id = 0
pass_count = 0
while pass_count < self.test_pass_num:
data_reader_handle.start()
try:
while True:
data_val, label_val = exe.run(train_cp,
fetch_list=fetch_list,
return_numpy=True)
ins_num = data_val.shape[0]
broadcasted_label = np.ones((ins_num, ) + tuple(
self.ins_shape)) * label_val.reshape((ins_num, 1))
self.assertEqual(data_val.all(), broadcasted_label.all())
batch_id += 1
except fluid.core.EOFException:
data_reader_handle.reset()
pass_count += 1
self.assertEqual(pass_count * self.batch_num, batch_id)
self.assertEqual(pass_count, self.test_pass_num)
def test_all(self):
self.main(with_double_buffer=False)
self.main(with_double_buffer=True)
if __name__ == '__main__':
unittest.main()