You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_row_conv_op.py

160 lines
4.8 KiB

# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
def row_conv_forward(x, lod, wt):
out = np.zeros_like(x)
num_sequences = len(lod[0])
seq_info = [0]
for seq_len in lod[0]:
seq_info.append(seq_info[-1] + seq_len)
context_length = wt.shape[0]
for i in range(num_sequences): # loop over number of sequences
start = seq_info[i]
end = seq_info[i + 1]
curinput = x[start:end, :]
curoutput = out[start:end, :]
cur_timesteps = end - start
for j in range(cur_timesteps): # loop over different timesteps
for k in range(context_length):
if j + k >= cur_timesteps:
continue
curoutput[j, :] += curinput[j + k, :] * wt[k, :]
return out
class TestRowConvOp1(OpTest):
def setUp(self):
self.op_type = "row_conv"
lod = [[2, 3, 2]]
T = sum(lod[0])
D = 16
context_length = 2
x = np.random.random((T, D)).astype("float32")
wt = np.random.random((context_length, D)).astype("float32")
self.inputs = {'X': (x, lod), 'Filter': wt}
out = row_conv_forward(x, lod, wt)
self.outputs = {'Out': (out, lod)}
def test_check_output(self):
self.check_output()
def test_check_grad_normal(self):
self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.05)
def test_check_grad_ignore_x(self):
self.check_grad(
['Filter'], 'Out', max_relative_error=0.05, no_grad_set=set('X'))
def test_check_grad_ignore_wt(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Filter'))
class TestRowConvOp2(OpTest):
def setUp(self):
self.op_type = "row_conv"
lod = [[20, 30, 50]]
T = sum(lod[0])
D = 35
context_length = 35
x = np.random.random((T, D)).astype("float32")
wt = np.random.random((context_length, D)).astype("float32")
self.inputs = {'X': (x, lod), 'Filter': wt}
out = row_conv_forward(x, lod, wt)
self.outputs = {'Out': (out, lod)}
def test_check_output(self):
self.check_output()
#max_relative_error is increased from 0.05 to 0.06 as for higher
#dimensional input, the dX on CPU for some values has max_rel_error
#slightly more than 0.05
def test_check_grad_normal(self):
self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.06)
def test_check_grad_ignore_x(self):
self.check_grad(
['Filter'], 'Out', max_relative_error=0.06, no_grad_set=set('X'))
def test_check_grad_ignore_wt(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Filter'))
def row_conv_foward_Tensor(x, wt):
out = np.zeros_like(x)
num_sequence = x.shape[0]
timesteps = x.shape[1]
context_length = wt.shape[0]
for i in range(num_sequence):
cur_in = x[i:i + 1, :][0]
cur_out = out[i:i + 1, :][0]
for j in range(timesteps):
for k in range(context_length):
if j + k >= timesteps:
continue
cur_out[j, :] += cur_in[j + k, :] * wt[k, :]
return out
class TestRowOpWithTensorInput(OpTest):
def setUp(self):
self.op_type = "row_conv"
length = [3, 2, 4]
B = 2
T = sum(length)
D = 16
context_length = 2
x = np.random.random((B, T, D)).astype("float32")
wt = np.random.random((context_length, D)).astype("float32")
self.inputs = {'X': x, 'Filter': wt}
out = row_conv_foward_Tensor(x, wt)
self.outputs = {'Out': out}
def test_check_output(self):
self.check_output()
def test_check_grad_ignore_x(self):
self.check_grad(
['Filter'], 'Out', max_relative_error=0.05, no_grad_set=set('X'))
def test_check_grad_normal(self):
self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.05)
def test_check_grad_ignore_wt(self):
self.check_grad(
['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Filter'))
if __name__ == '__main__':
unittest.main()