You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
86 lines
2.7 KiB
86 lines
2.7 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import math
|
|
from op_test import OpTest
|
|
|
|
|
|
class TestSequenceReshape(OpTest):
|
|
def init_data(self):
|
|
self.dimension = 12
|
|
self.x_lod = [[4, 1, 3, 3]]
|
|
self.x = np.random.uniform(0.1, 1, [11, 24]).astype('float32')
|
|
|
|
def setUp(self):
|
|
self.init_data()
|
|
self.op_type = 'sequence_reshape'
|
|
self.inputs = {'X': (self.x, self.x_lod)}
|
|
self.attrs = {'new_dim': self.dimension}
|
|
out, out_lod = self.compute_output(self.x, self.x_lod, self.dimension)
|
|
self.outputs = {'Out': (out, out_lod)}
|
|
|
|
def compute_output(self, x, x_lod, dimension):
|
|
x_width = x.shape[1]
|
|
out_lod = [[]]
|
|
for i in range(len(x_lod[0])):
|
|
seq_len = x_lod[0][i]
|
|
offset = (seq_len * x_width) / dimension
|
|
assert int(offset) * dimension == seq_len * x_width
|
|
out_lod[0].append(int(offset))
|
|
out = np.zeros(shape=(sum(out_lod[0]), dimension)).astype('float32')
|
|
out.ravel()[:] = x.ravel()[:]
|
|
return out, out_lod
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
self.check_grad(["X"], "Out")
|
|
|
|
|
|
class TestSequenceReshape_reduce(TestSequenceReshape):
|
|
def init_data(self):
|
|
self.dimension = 24
|
|
self.x_lod = [[4, 2, 2, 4]]
|
|
self.x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
|
|
|
|
|
|
class TestSequenceReshape_same(TestSequenceReshape):
|
|
def init_data(self):
|
|
self.dimension = 12
|
|
self.x_lod = [[4, 2, 2, 4]]
|
|
self.x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
|
|
|
|
|
|
class TestSequenceReshape_reduce_seq_len0(TestSequenceReshape):
|
|
def init_data(self):
|
|
self.dimension = 24
|
|
self.x_lod = [[0, 6, 0, 2, 4]]
|
|
self.x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
|
|
|
|
|
|
class TestSequenceReshape_reduce_seq_len0_case1(TestSequenceReshape):
|
|
def init_data(self):
|
|
self.dimension = 24
|
|
self.x_lod = [[0, 2, 8, 2, 0]]
|
|
self.x = np.random.uniform(0.1, 1, [12, 12]).astype('float32')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|