You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
194 lines
5.2 KiB
194 lines
5.2 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
from op_test import OpTest
|
|
import paddle.fluid.core as core
|
|
|
|
|
|
def stable_softmax(x):
|
|
"""Compute the softmax of vector x in a numerically stable way."""
|
|
shiftx = x - np.max(x).clip(-64.)
|
|
exps = np.exp(shiftx)
|
|
return exps / np.sum(exps)
|
|
|
|
|
|
class TestSoftmaxOp(OpTest):
|
|
def get_x_shape(self):
|
|
return [10, 10]
|
|
|
|
def get_axis(self):
|
|
return -1
|
|
|
|
def setUp(self):
|
|
self.op_type = "softmax"
|
|
self.use_cudnn = False
|
|
self.use_mkldnn = False
|
|
self.dtype = np.float32
|
|
self.init_kernel_type()
|
|
self.shape = self.get_x_shape()
|
|
self.axis = self.get_axis()
|
|
|
|
x = np.random.uniform(0.1, 1, self.shape).astype(self.dtype)
|
|
out = np.apply_along_axis(stable_softmax, self.axis, x)
|
|
|
|
self.inputs = {'X': OpTest.np_dtype_to_fluid_dtype(x)}
|
|
self.outputs = {'Out': out}
|
|
self.attrs = {
|
|
'axis': self.axis,
|
|
'use_cudnn': self.use_cudnn,
|
|
'use_mkldnn': self.use_mkldnn
|
|
}
|
|
|
|
def init_kernel_type(self):
|
|
pass
|
|
|
|
def test_check_output(self):
|
|
if self.use_cudnn:
|
|
place = core.CUDAPlace(0)
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
else:
|
|
self.check_output()
|
|
|
|
def test_check_grad(self):
|
|
if self.use_cudnn or self.dtype == np.float16:
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_grad_with_place(
|
|
place, ["X"], "Out", max_relative_error=0.01)
|
|
else:
|
|
self.check_grad(["X"], "Out", max_relative_error=0.01)
|
|
|
|
|
|
class TestSoftmaxOp2(TestSoftmaxOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
|
|
class TestSoftmaxOp3(TestSoftmaxOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
def get_axis(self):
|
|
return 0
|
|
|
|
|
|
class TestSoftmaxOp4(TestSoftmaxOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
def get_axis(self):
|
|
return 1
|
|
|
|
|
|
class TestSoftmaxOp5(TestSoftmaxOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
def get_axis(self):
|
|
return 2
|
|
|
|
|
|
class TestSoftmaxOp6(TestSoftmaxOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
def get_axis(self):
|
|
return 3
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxCUDNNOp(TestSoftmaxOp):
|
|
def init_kernel_type(self):
|
|
self.use_cudnn = True
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxCUDNNOp2(TestSoftmaxCUDNNOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxCUDNNOp5(TestSoftmaxCUDNNOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
def get_axis(self):
|
|
return 3
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxFP16Op(TestSoftmaxOp):
|
|
def init_kernel_type(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
# FIXME: If the x_shape is [10, 10], gradient failed.
|
|
def test_check_grad(self):
|
|
pass
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxFP16Op2(TestSoftmaxOp):
|
|
def init_kernel_type(self):
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxFP16CUDNNOp(TestSoftmaxOp):
|
|
def init_kernel_type(self):
|
|
self.use_cudnn = True
|
|
self.dtype = np.float16
|
|
|
|
def test_check_output(self):
|
|
if core.is_compiled_with_cuda():
|
|
place = core.CUDAPlace(0)
|
|
if core.is_float16_supported(place):
|
|
self.check_output_with_place(place, atol=1e-3)
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
"core is not compiled with CUDA")
|
|
class TestSoftmaxFP16CUDNNOp2(TestSoftmaxFP16CUDNNOp):
|
|
def get_x_shape(self):
|
|
return [2, 3, 4, 5]
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|