You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
167 lines
5.5 KiB
167 lines
5.5 KiB
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import random
|
|
from op_test import OpTest
|
|
|
|
|
|
def gen_match_and_neg_indices(num_prior, gt_lod, neg_lod):
|
|
if len(gt_lod) != len(neg_lod):
|
|
raise AssertionError("The input arguments are illegal.")
|
|
|
|
batch_size = len(gt_lod)
|
|
|
|
match_indices = -1 * np.ones((batch_size, num_prior)).astype('int32')
|
|
neg_indices = np.zeros((sum(neg_lod), 1)).astype('int32')
|
|
|
|
offset = 0
|
|
for n in range(batch_size):
|
|
gt_num = gt_lod[n]
|
|
ids = random.sample([i for i in range(num_prior)], gt_num)
|
|
match_indices[n, ids] = [i for i in range(gt_num)]
|
|
|
|
ret_ids = set([i for i in range(num_prior)]) - set(ids)
|
|
l = neg_lod[n]
|
|
neg_ids = random.sample(ret_ids, l)
|
|
neg_indices[offset:offset + neg_lod[n], :] = np.array(neg_ids).astype(
|
|
'int32').reshape(l, 1)
|
|
offset += neg_lod[n]
|
|
|
|
return match_indices, neg_indices
|
|
|
|
|
|
def target_assign(encoded_box, gt_label, match_indices, neg_indices, gt_lod,
|
|
neg_lod, mismatch_value):
|
|
batch_size, num_prior = match_indices.shape
|
|
|
|
# init target bbox
|
|
trg_box = np.zeros((batch_size, num_prior, 4)).astype('float32')
|
|
# init weight for target bbox
|
|
trg_box_wt = np.zeros((batch_size, num_prior, 1)).astype('float32')
|
|
# init target label
|
|
trg_label = np.ones((batch_size, num_prior, 1)).astype('int32')
|
|
trg_label = trg_label * mismatch_value
|
|
# init weight for target label
|
|
trg_label_wt = np.zeros((batch_size, num_prior, 1)).astype('float32')
|
|
|
|
gt_offset = 0
|
|
neg_offset = 0
|
|
for i in range(batch_size):
|
|
cur_indices = match_indices[i]
|
|
col_ids = np.where(cur_indices > -1)
|
|
col_val = cur_indices[col_ids]
|
|
|
|
# target bbox
|
|
for v, c in zip(col_val + gt_offset, col_ids[0].tolist()):
|
|
trg_box[i][c][:] = encoded_box[v][c][:]
|
|
# weight for target bbox
|
|
trg_box_wt[i][col_ids] = 1.0
|
|
|
|
trg_label[i][col_ids] = gt_label[col_val + gt_offset]
|
|
trg_label_wt[i][col_ids] = 1.0
|
|
# set target label weight to 1.0 for the negative samples
|
|
if neg_indices is not None:
|
|
neg_ids = neg_indices[neg_offset:neg_offset + neg_lod[i]]
|
|
trg_label_wt[i][neg_ids] = 1.0
|
|
# update offset
|
|
gt_offset += gt_lod[i]
|
|
neg_offset += neg_lod[i]
|
|
|
|
return trg_box, trg_box_wt, trg_label, trg_label_wt
|
|
|
|
|
|
class TestTargetAssginFloatType(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "target_assign"
|
|
num_prior = 120
|
|
num_class = 21
|
|
gt_lod = [5, 6, 12]
|
|
neg_lod = [4, 3, 6]
|
|
mismatch_value = 0
|
|
batch_size = len(gt_lod)
|
|
num_gt = sum(gt_lod)
|
|
|
|
encoded_box = np.random.random((num_gt, num_prior, 4)).astype('float32')
|
|
gt_label = np.random.randint(
|
|
num_class, size=(num_gt, 1)).astype('int32')
|
|
|
|
match_indices, neg_indices = gen_match_and_neg_indices(num_prior,
|
|
gt_lod, neg_lod)
|
|
|
|
out, out_wt, _, _ = target_assign(encoded_box, gt_label, match_indices,
|
|
neg_indices, gt_lod, neg_lod,
|
|
mismatch_value)
|
|
|
|
# assign regression targets
|
|
x = encoded_box
|
|
self.inputs = {
|
|
'X': (x, [gt_lod]),
|
|
'MatchIndices': match_indices,
|
|
}
|
|
self.attrs = {'mismatch_value': mismatch_value}
|
|
self.outputs = {
|
|
'Out': out,
|
|
'OutWeight': out_wt,
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
class TestTargetAssginIntType(OpTest):
|
|
def setUp(self):
|
|
self.op_type = "target_assign"
|
|
num_prior = 120
|
|
num_class = 21
|
|
gt_lod = [5, 6, 12]
|
|
neg_lod = [4, 3, 6]
|
|
mismatch_value = 0
|
|
batch_size = len(gt_lod)
|
|
num_gt = sum(gt_lod)
|
|
|
|
encoded_box = np.random.random((num_gt, num_prior, 4)).astype('float32')
|
|
gt_label = np.random.randint(
|
|
num_class, size=(num_gt, 1)).astype('int32')
|
|
|
|
match_indices, neg_indices = gen_match_and_neg_indices(num_prior,
|
|
gt_lod, neg_lod)
|
|
|
|
_, _, out, out_wt, = target_assign(encoded_box, gt_label, match_indices,
|
|
neg_indices, gt_lod, neg_lod,
|
|
mismatch_value)
|
|
|
|
# assign cassification argets
|
|
x = np.reshape(gt_label, (num_gt, 1, 1))
|
|
self.inputs = {
|
|
'X': (x, [gt_lod]),
|
|
'MatchIndices': match_indices,
|
|
'NegIndices': (neg_indices, [neg_lod]),
|
|
}
|
|
self.attrs = {'mismatch_value': mismatch_value}
|
|
self.outputs = {
|
|
'Out': out,
|
|
'OutWeight': out_wt,
|
|
}
|
|
|
|
def test_check_output(self):
|
|
self.check_output()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|